

Available online at www.sciencedirect.com

SCIENCE DIRECT*

European Journal of Pharmacology 493 (2004) 1-17

www.eisevier.com/iocate/ejpna

Review

Spider and wasp neurotoxins: pharmacological and biochemical aspects

Renê de O. Beleboni^a, Andrea B. Pizzo^b, Andréia C.K. Fontana^c, Ruither de O.G. Carolino^a, Joaquim Coutinho-Netto^a, Wagner F. dos Santos^{b,*}

^a Department of Biochemistry and Immunology, School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
 ^b Department of Biology, Faculty of Philosophy, Sciences and Literature, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, SP 14040-901, Brazil
 ^c Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA

Received 8 March 2004; accepted 25 March 2004 Available online 10 May 2004

Abstract

Venoms from several arthropods are recognized as useful sources of bioactive substances, such as peptides, acylpolyamines, and alkaloids, which show a wide range of pharmacological effects on synaptic transmission. In this work, we summarize and compile several biochemical and pharmacological aspects related to spider and wasp neurotoxins. Their inhibitory and stimulatory actions on ion channels, receptors, and transporters involved in mammalian and insect neurotransmission are considered.

© 2004 Elsevier B.V. All rights reserved.

Keywords: Spider; Wasp; Neurotoxin; Ion channel; Receptor; Transporter and Neurotransmitter release

1. Introduction

Insects (Arthropoda, Insecta) are extraordinarily prevalent and widespread over the Earth; their adaptability and variety assure their continuous existence. They have been surviving for at least 300 millions years, in part due to their evolutionary characteristics, which include the acquisition of wings, an exoskeleton, adaptability to different niches, chemical means of communication, capacity for metamorphosis, and production of toxins (Meinwald and Eisner, 1995).

Venoms are considered a rich source of compounds showing a wide range of pharmacological effects on several biological systems, including the nervous system. Spider and wasp toxins characterized to this date include proteins, peptides, enzymes, amino acids, inorganic salts, and a range of amines, which, acting together, produce their biological effects (Blum, 1981; Schmidt, 1986; Jackson and Parks, 1989).

E-mail address: wagnerf@usp.br (W.F. dos Santos).

Acylpolyamines, proteins, and peptides are the most relevant and studied compounds representing the main toxic arsenal of spider and wasp venoms (McCormick and Meinwald, 1993; Olivera et al., 1994; Blagbrough et al., 1994).

Acylpolyamines, a natural link between spider and wasp venoms, are potent small molecules, often specific blockers of ion channels or receptors. Their targets are receptors that recognize excitatory amino acids in the mammalian and insect nervous systems. These compounds can be subdivided into two groups: the amino acid-containing acylpolyamines (Fig. 1A), and the nonamino acid-containing acylpolyamines (Fig. 1B). Both types act similarly as glutamate receptor blockers, and both incorporate the same family of aromatic end groups. Briefly, the amino acid-containing acylpolyamines, the first to be discovered, possess one, two, or three basic amino acids between the acyl end group and the polyamines chain (for review, see McCormick and Meinwald, 1993; Blagbrough et al., 1994).

A great number of polypeptides and peptides found in spider and wasp venoms are highly reticulated by several disulfide bridges and possess modified amino or carboxy termini or both, which increase their in vivo stability (Norton and Pallaghy, 1998). A fold, presumably largely

^{*} Corresponding author. Tel.: +55-16-602-3657; fax: +55-16-633-1758

Fig. 1. Chemical structures of amino acid-containing (A) and nonamino acid-containing (B) acylpolyamines from spider venoms.

dictated by the gaps between the half-cystine residues and their pairing pattern, is crucial for the toxin's activities and appears to be an ideal compact globular scaffold for the presentation of functional groups, generating a range of peptides acting on diverse biological targets. As a matter of fact, many ion channel toxins display highly basic surfaces and a consensual sequence known as the cystine knot. This structural motif is characterized by a triple-stranded, antiparallel β-sheet stabilized by disulfide bridges (Fig. 2). It is suspected that these groups play a role in interactions between the toxin and the vestibule and the pore of the targeted ion channel. The robust nature of this motif makes it an excellent scaffold for the design and bioengineering of novel polypeptides showing enhanced activity against existing targets, or activity against new ones (Omecinsky et al., 1996; Norton and Pallaghy, 1998).

Acylpolyamines and polypeptides have been used as tools to extend our knowledge of molecular mechanisms of neurotransmission (Usherwood and Blagbrough, 1991; Olivera and Cruz, 2001). Research on such neurotoxins

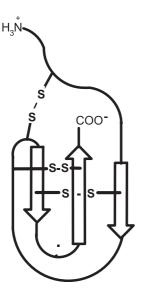


Fig. 2. Schematic diagram illustrating the cystine knot motif for a three-disulfide-bridge (-S-S-) toxin. Modified from Norton and Pallaghy (1998).

could also aim at the development of natural insecticides and drugs potentially useful for the treatment of neuropathologies (Quistad et al., 1991; Bloomquist et al., 1996; Harvey et al., 1998; Heading, 2002).

This review will focus on current knowledge of neurotoxins from spider and wasp venoms, reporting information on the biochemistry and pharmacology of these extraordinary molecules. For didactic simplicity, the toxins were grouped according to their pharmacological actions.

2. Toxins acting on Na⁺ channels

Voltage-gated Na⁺ channels are present in most excitable cell membranes, and are responsible for the generation and propagation of action potentials in these cells. They represent transmembrane proteins composed of a major α -subunit of approximately 260 kDa (sufficient for functional expression) and of at least three different auxiliary β-subunits of 30-40 kDa, which modify the kinetics and voltage dependence of channel gating. α-Subunit consists of four homologous domains (I-IV), each showing six transmembrane segments referred to as S1-S6 as well as a pore loop located between S5 and S6 segments. Under the influence of an electrical field, the S4 segment acts as an electric sensor, participating in the channel activation mechanism; the intracellular region between domains III and IV is important for inactivation (for reviews, see Catterral, 2000; Ogata and Ohishi, 2002; Yu and Catterall, 2003).

A variety of different isoforms of voltage-gated Na⁺ channels have now been identified by electrophysiological and biochemical techniques and cloning (Goldin, 2001). These channels can be classified into two different categories based on their amino acid sequence: Na_v1 isoforms (comprising nine homologous clones: Na_v1.1–Na_v1.9) and Na_x, structurally different from Na_v1 isoforms in critical functional motifs such as S4 voltage sensors, and inactivation gate and pore region (Goldin et al., 2000). The relationships of Na_v1 isoforms and subthreshold electrical activity, and their pivotal roles in pain production, alongside with their well-known functions in action potential upstroke in

excitable cells, have been recently demonstrated. Tetrodotoxin (TTX)-sensitive $Na_v1.1$, $Na_v1.2$, $Na_v1.3$, and $Na_v1.7$ channels are expressed in neurons. $Na_v1.5$, $Na_v1.8$, and $Na_v1.9$ are highly expressed in heart and dorsal root ganglion neurons. The latter present differing tetrodotoxin resistances evoked by changes at a single position in domain I. $Na_v1.4$ and $Na_v1.6$ are tetrodotoxin-sensitive, primarily expressed in skeletal muscles and the central nervous system, respectively (Goldin et al., 2000; Ogata and Ohishi, 2002). Na_x isoforms are tetrodotoxin-resistant and may be related to transport or absorption of Na^+ ions by sensing the Na^+ concentration gradient across the membrane (Watanabe et al., 2000).

A number of toxins and chemicals that block or modulate the function of voltage-gated Na⁺ channels have been discovered; some of these are presently being used as chemical tools to study these channels (Table 1). At least six neurotoxin receptor sites have been identified on the mammalian Na⁺ channel (Strichartz et al., 1987; Catterall, 1995). The binding sites at which neurotoxins affect gating were found to be allosterically coupled, suggesting that conformational changes induced by neurotoxin binding modify the equilibrium between the open and the closed/ inactivated states and also modify conformation and toxin binding affinity at other neurotoxin receptor sites (Catterall and Beneski, 1980). Some spider and wasp toxins acting on Na⁺ channels, like δ -atracotoxin, δ -palutoxins, and pompilidotoxins (all described below), bind at site 3, which involves the extracellular loops IS5-S6, IVS3-S4, and IVS5-S6 of the ionic channel (Rogers et al., 1996; Cestele

and Catterall, 2000). Neurotoxins from scorpions and sea anemone also act on Na⁺ channel site 3, which slow the coupling of sodium channel activation to inactivation (Richard Benzinger et al., 1999; Leipold et al., 2004).

Most of the research works on spider toxins interfering with Na+ channels deal with molecules isolated from Agelenopsis aperta, Phoneutria nigriventer, Atrax robustus, and Hadronyche versuta spider venoms. A. aperta venom was the first to be characterized as possessing Na⁺ channel toxins, peptides rich in cysteine residues referred to as μagatoxins I-IV. They cause irreversible paralysis and repetitive firing in presynaptic terminals of houseflies, and evoke massive release of neurotransmitters by increasing Na⁺ influx through tetrodotoxin-sensitive channels, shifting the activation curve to more negative potentials (Omecinsky et al., 1996; Skinner et al., 1989). Other venom neurotoxins showing structural homology with µ-agatoxins have been isolated and characterized: they include curtatoxins (I-III) and huwentoxin-I, from the venom of Hololena curta and Selenocosmia huwena, respectively (Stapleton et al., 1990; Liang et al., 2000).

Versutoxin (VTX or δ -atracotoxin-Ar1) and robustoxin (RTX or δ -atracotoxin-Hv1a), isolated from the venom of the Australian spiders *H. versuta* and *A. robustus*, respectively, produce intense effects on autonomic system and skeletal neuromuscular junctions. These toxins are peptides with 42 amino acid residues, four disulfide bridges, several basic amino acids, and a high sequence homology (Nicholson et al., 1996; Pallaghy et al., 1997; Fletcher et al., 1997). Both versutoxin and robustoxin decrease batracho-

Table 1 Toxins acting on Na⁺ channels

Toxin	Source	Chemistry	Main action(s)	References
μ-Agatoxins I–IV (μ-Aga-I to μ-Aga-IV)	A. aperta	Peptides, 35–36	Increase Na ⁺ influx by tetrodotoxin-sensitive channel, shifting the activation curve to more	Adams et al. (1989), Skinner et al. (1989),
δ-Palutoxins IT1–IT4 (δ-paluIT1 to δ-paluIT4)	P. luctuosus	amino acids Peptides, 36–37 amino acids	negative potentials IT1 acts by affecting insect Na ⁺ channel inactivation, resulting in the appearance of a late-maintained Na ⁺ current	Omecinsky et al. (1996) Corzo et al. (2000)
α -Pompilidotoxin (α -PMTX)	A. samariensis	Peptide, 13 amino acids	Might slow or block conformational changes required for fast inactivation of the Na ⁺ channels on the extracellular surface	Sahara et al. (2000)
β-Pompilidotoxin (β-PMTX)	B. maculifrons	Peptide, 13 amino acids	Slows the inactivation of Na ⁺ channels on rat hippocampal CA1 interneurons	Miyawaki et al. (2002)
Huwentoxin-IV (HWTX-IV)	S. huwena	Peptides, 35 amino acids	It has been proposed that this toxin affects the Na ⁺ channel through a mechanism quite similar to that of tetrodotoxin	Peng et al. (2002)
P. nigriventer peptide toxin 2-6 (PnTx2-6)	P. nigriventer	Peptide, 48 amino acids	Increases the time of channel inactivation and alters the threshold of activation for a hyperpolarizing direction	Matavel et al. (2002)
Robustoxin (RTX or δ-atracotoxin-Hv1a)	A. robustus	Peptide, 42 amino acids	Inhibits the conversion of the open state to the inactivated state of tetrodotoxin-sensitive sodium channels in rat dorsal root ganglion	Nicholson et al. (1996), Pallaghy et al. (1997)
Versutoxin (VTX or δ-atracotoxin-Ar1)	H. versuta	Peptide, 42 amino acids	Decreases the Na ⁺ current in tetrodotoxin-sensible channels by increasing the threshold of activation and the rate of recovery from inactivation, in whole-cell patch-clamp experiments in the rat dorsal root ganglion	Brown et al. (1988), Nicholson et al. (1996), Fletcher et al. (1997)

toxin-activated Na^+ flux (EC₅₀ = 10 and 14 nM, respectively) and increase veratridine-activated $^{22}\mathrm{Na}^+$ flux in rat cortical synaptosomes. Versutoxin also decreases the Na^+ current in tetrodotoxin-sensitive channels by increasing the threshold of activation and the rate of recovery from inactivation, as shown by whole cell patch clamp experiments in rat dorsal root ganglion (Nicholson et al., 1994).

A new δ -atracotoxin 1b (Hv1b) from *H. versuta* spider venom has been isolated and characterized. This peptide, inactive in insects, has 67% homology with δ -atracotoxin-Hv1a and is approximately 15–30-fold less potent than the latter (Szeto et al., 2000). Whole cell patch clamp experiments in rat ganglion dorsal neurons show that this toxin has activity similar to that of δ -atracotoxins and scorpion δ -toxins. Other toxins with δ -atracotoxin-like activity have been characterized, such as that isolated from the *Missulena bradleyi* spider venom, which induces neurotransmitter release in smooth and skeletal muscle preparations (Rash et al., 2000).

Four insecticidal peptides were purified from the venom of the spider $Paracoelotes\ luctuosus$ and referred to as δ -palutoxins IT1–IT4, with LD₅₀ values in 9–50 µg/g of insect range ($Spodoptera\ litura$). They show 36–37 amino acid residues, four disulfide bridges, and high homology between them and μ -agatoxins and curtatoxins. δ -Palutoxin IT1 is the most potent and insect-selective, and acts by affecting Na⁺ channel inactivation, resulting in the appearance of a late-maintained Na⁺ current. It is distinguished from scorpion and sea anemone toxins by its lack of effect on peak Na⁺ conductance on the early phase of Na⁺ current inactivation and by the lack of a shift in the Na⁺ channel activation voltage (Corzo et al., 2000).

Hainantoxin-IV (HNTX-IV), isolated from the venom of the spider *Seleconosmia hainana*, inhibits mammalian neural tetrodotoxin-sensitive Na $^+$ currents, causing a hyperpolarizing shift of the voltage midpoint of steady-state Na $^+$ channel inactivation in adult rat dorsal root ganglion neurons (EC $_{50}$ =44.6 nM). However, it is ineffective in modifying the kinetics of the Na $^+$ currents. It has been proposed that this neurotoxin acts in a distinct way from versutoxin and μ -agatoxins (Xiao and Liang, 2003).

Huwentoxin-IV, a 4.1-kDa peptide from *S. huwena* spider, specifically inhibits the tetrodotoxin-sensitive voltage-gated Na^+ channel in adult rat dorsal root ganglion neurons ($\mathrm{EC}_{50} = 30$ nM). It has been proposed that this toxin affects Na^+ channels through a mechanism quite similar to that of tetrodotoxin, suppressing the peak Na^+ current without altering the activation or inactivation kinetics (Peng et al., 2002).

The *P. nigriventer* peptide toxin 2–6 (PnTx2–6), at micromolar concentration, increases the time of channel inactivation and alters the threshold of activation in a hyperpolarizing direction; it also reduces current amplitude in frog skeletal muscle. The mature toxin has 48 amino acid residues, 10 of them cysteines. *P. nigriventer* peptide toxin 2–6 activity is proposed to be similar to site 3 toxins (Matavel et al., 2002).

Three important insecticidal polypeptides ($LD_{50} = 2.42 - 22.5 \mu g/g$ on *Heliothis virescens*) with molecular weight ranging from 6371 to 7080 Da were isolated from the venom of the spider *Diguetia canities*. The peptide referred to as DTX9.2 induces spastic paralysis in Lepidoptera larvae, blocked by tetrodotoxin, suggesting that DTX9.2 acts upon the voltage-dependent sodium channels of insect nerve membrane (Bloomquist et al., 1996).

Regarding wasp toxins, mandaratoxin (molecular weight 20 kDa) is a polypeptide isolated from the venom of the hornet *Vespa mandarinia*, which reduces the Na⁺ current in the neuromuscular junctions of a lobster walking leg (Abe et al., 1982).

α-Pompilidotoxin and β-pompilidotoxin are two small peptides with 13 amino acid residues isolated from the venom of the solitary wasps Anoplius samariensis and Batozonellus maculifrons, respectively. Electrophysiological studies in lobster leg muscles and in rat trigeminal neurons demonstrated that α-pompilidotoxin, at micromolar concentration, might slow or block conformational changes required for fast inactivation of Na⁺ channels on the extracellular surface (Sahara et al., 2000; Yokota et al., 2001). Synthesized analogs of α -pompilidotoxin reveal that the substitutions of Arg1, Lys3, and Lys12 by others markedly change the toxic potency of this molecule (Konno et al., 2000). Studies using the Na⁺ channel α -subunit expressed in human embryonic kidney cells reveal that βpompilidotoxin modifies rat brain type II Na⁺ channel, but fails to act on the rat heart α-subunit at similar concentrations (Kinoshita et al., 2001). Finally, it was also demonstrated that α -pompilidotoxin and β -pompilidotoxin slow the inactivation of Na⁺ channels on rat hippocampal CA1 oriens, radiatum, and lacunosum molecular interneurons (Miyawaki et al., 2002).

3. Toxins acting on K⁺ channels

 K^+ channels are the most abundant among ion channels and play important roles in neurons and muscle cells signaling processes, such as membrane potential, neuronal excitability, and the release of neurotransmitters. K^+ channels are typical tetramers, comprising four pore-forming α -subunits and, in some case, additional β -subunits that regulate channel function. Many K^+ channels subtypes, with a wide range of localizations, have been described so far, but their physiological functions are still far from being fully understood (Coetzee et al., 1990; Yi et al., 2001).

Although several physiologically important K^+ channels remain to be cloned, two families of K^+ channel genes have been described to date. One includes the outward-rectifying, voltage-gated K^+ (Kv) channels and the calcium-activated K^+ (K_{Ca}) channels. Voltage-gated K^+ channels regulate resting membrane potential, action potential duration and frequency, and neurotransmitter release. Mammalian voltage-gated K^+ channels are classified into four groups Kv1,

Kv2, Kv3, and Kv4, based on their relation to the *Shaker*, *Shab*, *Shaw*, and *Shal* channels cloned from *Drosophila* (Terlau and Stuhmer, 1998). Structurally, calcium-activated K^+ channels can be subdivided into two groups: the smallor intermediate-conductance K^+ channel, and the α high-conductance K^+ channels (Vergara et al., 1998; Coetzee et al., 1990).

The other family, distantly related to voltage-sensitive K⁺ channels, is composed of inwardly rectifying K⁺ (Kir) channels. They stabilize the resting membrane potential near the K⁺ equilibrium potential. The various types of inwardly rectifying K⁺ channels (Kir1.x–Kir7.x) are distinguished by their effector functions (Nichols and Lopatin, 1997; Yamada et al., 1998).

Spider toxins were especially important for the structural and pharmacological characterization of two subtypes of outward-rectifying channels: Kv2 and Kv4 (Table 2) (Dolly and Parcej, 1996; Kukuljan et al., 1995).

Two peptides referred to as phrixotoxins 1 and 2 (PaTx1 and PaTx2), purified from the venom of the spider *Phrixotrichus auratus* and composed by 29–31 amino acid residues, specifically block Kv4.3 and Kv4.2 subtypes elicited currents, by alteration of the channel gating properties (EC₅₀=5–70 nM) (Diochot et al., 1999).

Argiotoxin-636 (Arg-636), isolated from the venom of the spider *Argiope* sp., is an acylpolyamine that inhibits ligand-gated Na⁺ channels and has been characterized as an inhibitor of voltage-gated K⁺ channels, blocking the inward-rectifying Kir2.1 subtype (Lee et al., 1999). Further information about this toxin can be found in the Toxins Acting on Glutamate Receptors section.

Hanatoxins (HaTx1 and HaTx2) from *Grammostola* spatulata spider venom, unrelated in their primary sequence

to other K⁺ channel inhibitors, are 35 amino acid residue peptides with three disulfide bridges. In Kv2.1 K⁺ channels, the blockage occurs as a consequence of a depolarizing shift in the voltage dependence of activation (K_d =42 nM for both) and not by occlusion of the channel pore (Swartz and MacKinnon, 1997; Takahashi et al., 2000).

The heteropodatoxins (HpTX1-HpTX3) from spider *Heteropoda venatoria* are 29–32 amino acid residue peptides that prolong action potentials in rat ventricular myocytes. This action has been attributed to blockage of voltage-dependent K^+ currents, as demonstrated to occur in *Xenopus laevis* oocytes expressing Kv4.2. The toxins have been show to slow the time course of current activation and inactivation, and shift the voltage dependence of current inactivation to more positive potentials (EC₅₀=100 nM for heteropodatoxins 1 and 2, and 67 nM for heteropodatoxin 3) (Sanguinetti et al., 1997; Bernard et al., 2000).

Recently, the peptide stromatoxin (ScTx1) was isolated from the venom of the African tarantula *Stromatopelma calceata* and characterized as a strong inhibitor of Kv4.2 and Kv2.2 subtype K^+ channels (EC₅₀=21.4 nM). However, stromatoxin also weakly inhibits Kv2.1 and Kv2.1/Kv9.3 subtypes (Escoubas et al., 2002).

Heteroscodratoxins 1 and 2 (HmTx1 and HmTx2), from the tarantula spider *Heteroscodra maculata* venom, bind to the voltage sensor and inhibit the K^+ channel (EC₅₀ = 100–300 nM for both). Heteroscodratoxin 2 seems to be specific for Kv2 channels, whereas heteroscodratoxin 1 also inhibits the Kv4 subtype with the same potency. Heteroscodratoxin 1 is the first peptide described to be effective on the Kv4.1 (Escoubas et al., 2002).

Finally, the *P. nigriventer* peptide toxin 3–1 (PnTx3–1), at micromolar concentration, selectively and reversibly

Table 2
Toxins acting on K⁺ channels

Toxin	Source	Chemistry	Main action(s)	References
Argiotoxin-636 (Arg-636)	Argiope sp.	Acylpolyamine, 636 Da	Inhibits voltage-gated K ⁺ channels, blocking the inward-rectifying channel Kir2.1 subtype	Lee et al. (1999)
Hanatoxins 1 and 2 (HaTx1 and HaTx2)	G. spatulata	Peptides, 35 amino acids	Block Shab-related Kv2.1 channel from rat brain, shifting the channel opening to more depolarized voltages	Takahashi et al. (2000)
Heteropodatoxins 1-3 (HpTX1 to HpTX3)	H. venatoria	Peptides, 29–32 amino acids	Block voltage-dependent K ⁺ current in Kv4.2 channel, slowing the time course of current activation and inactivation and shifting the voltage dependence of current inactivation to more positive potentials	Sanguinetti et al. (1997)
Heteroscodratoxins 1 and 2 (HmTx1 and HmTx2)	H. maculata	Peptides, 34–38 amino acids	Bind to the voltage-sensing domains and inhibit the K ⁺ channel; HmTx2 seems to be specific for Kv2 channels, whereas HmTx1 also inhibits the Kv4 subtype with the same potency	Escoubas et al. (2002)
<i>P. nigriventer</i> peptide toxin 3-1 (PnTx3-1)	P. nigriventer	Peptide, 40 amino acids	Inhibits A-type K ⁺ currents in GH3 cells	Carneiro et al. (2003)
Phrixotoxins 1 and 2 (PaTx1 and PaTx2)	P. auratus	Peptides, 29–31 amino acids	Block Kv4.3 and Kv4.2 subtypes elicited currents, altering the gating properties of these channels	Diochot et al. (1999)
Stromatoxin-1 (ScTx1)	S. calceata	Peptides, 34–38 amino acids	Inhibits voltage-dependent potassium channels Shab (Kv2) and Shab (Kv4) subfamilies by modulating the voltage-dependence of the channel and by inducing a shift in the conductance-voltage relationship to more depolarized potentials	Escoubas et al. (2002)

inhibits A-type K⁺ currents in GH3 cells without blocking other K⁺ currents (Kushmerick et al., 1999; Carneiro et al., 2003).

4. Toxins acting on Ca2+ channels

It is well known that Ca²⁺ ions are involved in several physiological processes, including secretion of hormones and neurotransmitters, regulation of ion channel activity, enzymatic modulation, gene expression, cell proliferation, apoptosis, and cell death.

A variety of voltage-gated Ca²⁺ channels are required to mediate the functionality of Ca²⁺ ions in excitable cells. These proteins are classified into low-voltage-activated channels that inactivate rapidly, and high-voltage-activated channels that show no inactivation (Bean, 1989). High-voltage-activated Ca²⁺ channels are subdivided according to their pharmacological and biophysical characteristics into L-type (cardiac, smooth, and skeletal muscles; endocrine cells; neurons), N-type, P-type, Q-type (nerve terminals and dendrites), and R-type (neurons). Low-voltage-activated channels are only of T-type (cardiac and skeletal muscles, neurons) (Catterral, 2000). Recently, a more genetically

derived nomenclature dividing Ca²⁺ channels into Ca_v1 (L-type Ca²⁺ channels), Ca_v2 (P-type, Q-type, N-type, and R-type Ca²⁺ channels), and Ca_v3 (T-type Ca²⁺ channels) families, respectively, has been proposed (Ertel et al., 2000).

All voltage-gated Ca^{2+} channels are heteromers formed by a pore-forming α_1 -subunit and auxiliary regulatory subunits (β and disulfide-linked $\alpha_2\delta$ dimer). The α_1 -subunit is responsible for ion conduction, voltage sensing, and binding site for drugs and toxins (Table 3). An additional auxiliary subunit-denominated γ -subunit, initially identified in skeletal muscle Ca^{2+} channels, has been also found in neurons (Takahashi et al., 1987; Letts et al., 1998).

Voltage-gated Ca²⁺ channels present wide molecular diversity. Molecular cloning has revealed the existence of at least 10 different genes showing considerable homology (77–90%), encoding α_1 -subunit (Moreno, 1999). The $\alpha_2\delta$ dimer has been identified by a single gene; nevertheless, extensive alternative splicing produces five distinct isoforms (Williams et al., 1992; Powers et al., 1994). At least, four β -subunit genes were established, and alternative splicing has been shown for two β genes (Birnbaumer et al., 1998). Only one γ -subunit gene was found and no alternative splicing was detected (Powers et al., 1993). Such diversity is highly significant since the precise nature of the α_1 , β , $\alpha_2\delta$, and γ

Table 3
Toxin acting on Ca²⁺ channels

Toxin	Source	Chemistry	Main action(s)	References
ω-Agatoxin IA	A. aperta	Peptide, 69	Inhibits Ca ²⁺ channel currents in cultured rat dorsal	Adams et al. (1990),
(ω-Aga-IA)		amino acids	root ganglion neurons and cerebellar granule cells, and blocks presynaptic Ca ²⁺ in insects' motoneurons	Scott et al. (1990)
ω-Agatoxin IIA	A. aperta	Peptide,	Blocks presynaptic Ca ²⁺ channels in insects'	Venema et al. (1992),
(ω-Aga-IIA)		approximately	motoneurons and neurosecretory cells and Ca2+	Olivera et al. (1994)
		9.2 kDa	channels in rat and chick synaptosomal membranes	
ω-Agatoxin IIIA	A. aperta	Peptide, 76	Blocks N-type and P-type currents in a voltage-	Mintz et al. (1991),
(ω-Aga-IIIA)		amino acids	dependent manner in rat sensory and central neurons; unlike ω-aga-IA and ω-aga-IIA, it does not block insects motoneurons at nanomolar concentrations; it also blocks Ca ²⁺ entry into chick brain synaptosomes	Uchitel (1997)
ω-Agatoxin IVA	A. aperta	Peptide,	Inhibits P-type and Q-type Ca ²⁺ channels by altering	Adams et al. (1990),
(ω-Aga-IVA)		approximately	the voltage-dependent gating so that very large	Baltazar et al. (1997)
		5.2 kDa	depolarizations are needed for channel opening	
ω-Grammotoxin	G. spatulata	Peptide, 36	Blocks P-type and N-type Ca ²⁺ channels potently	Keith et al. (1995),
SIA (GrTx)		amino acids	and specifically; some authors have suggested that this toxin also acts in Q-type Ca ²⁺ channels in rat hippocampal neurons	Piser et al. (1995)
ω-P. nigriventer peptide	P. nigriventer	Peptide, 34	Decreases intracellular release of Ca ²⁺ in	Guatimosim et al. (1997),
toxin 3-3 (ω-PnTx3-3)		amino acids	synaptosomes and blocks the synaptic vesicles exocytosis by inactivation of intrasynaptosomal P/Q-type Ca ²⁺ channels	Vieira et al. (2003)
ω-Phonetoxin IIA	P. nigriventer	Peptide, 76	Blocks N-type Ca ²⁺ channels in rat dorsal root	Cassola et al. (1998)
	Ü	amino acids	ganglion neurons and L-type channels in rat beta pancreatic cells	
CNS 2103	D. okefinokensis	Acylpolyamine	Blocks L-type and R-type Ca ²⁺ channels in N1E-115 cells	Kobayashi et al. (1992)
Funnel web spider	A. aperta	Acylpolyamine,	Blocks P-type Ca ²⁺ channels in Purkinje cells	Uchitel (1997)
(FTX)	*	<500 Da	and squid giant synapse	` /
SNX-325	S. florentina	Peptide, 49	Inhibits the majority of Ca ²⁺ currents, with some	Newcomb et al. (1995)
	-	amino acids	specificity to N-type channels	

gene products defines the pharmacological and biophysical characteristics of the expressed Ca²⁺ channel heteromers (Catterral, 2000).

ω-Agatoxins and the acylpolyamine funnel web spider (FTX) were the first toxins isolated from *A. aperta* spider venom found to be active on voltage-gated Ca²⁺ channels. ω-Agatoxins are heterologous polypeptides rich in cysteine and disulfide bridges, which vary from 5 to 10 kDa in length and are classified according to their homology, selectivity, and mode of action (Uchitel, 1997).

ω-Agatoxins group I (ω-Aga-IA, ω-Aga-IB, and ω-Aga-IC) and group II (ω-Aga-IIA and ω-Aga-IIB) are composed of potent blockers of insect neuromuscular transmission having low homology between them. ω-Agatoxins from groups I and II seem to be selective for insect L-type and N-type Ca²⁺ channels, respectively. ω-Agatoxins group III (exemplified by ω-Aga-IIIA) are inactive in insects, but block the binding of [125]ω-conotoxin GVIA to chick or rat brain membranes, as do toxins from group I. In this system, K⁺-stimulated Ca²⁺ entry is inhibited by ω-agatoxins-IIA and ω-agatoxins-IIIA, but not by the toxins from group I. Group IV is comprised of ω-agatoxins, like ωagatoxins-IVA, which is inactive in insects and avian species but is a potent P/Q-type Ca2+ channel blocker in mammalian species (Adams et al., 1990; Olivera et al., 1994; Uchitel, 1997).

ω-Agatoxin IVA has been particularly useful in the elucidation of the involvement of several types of Ca²⁺ channels on neurotransmitter release. ω-Agatoxin IVA markedly inhibits the Ca²⁺-dependent fraction of the evoked [³H]γ-aminobutyric acid (GABA) release and the elevation of Ca2+ induced by high [K+] in mouse brain synaptosomes. Nevertheless, the Na⁺-dependent, Ca²⁺-independent, carrier-mediated GABA release by veratridine is not modified by this toxin (Sitges and Chiu, 1995). Furthermore, it has been shown that ω-agatoxin IVA, at micromolar concentration, blocks GABA, glutamate, dopamine, serotonin, and acetylcholine release from rat brain slices (Harvey et al., 1996). This toxin also acts on the endocrine system and has been useful for the understanding of the role of P-type Ca²⁺ channels in the release of catecholamines from adrenal chromaffin cells, causing a biphasic, dose-dependent inhibition of secretion (Baltazar et al., 1997).

Although present in the same venom, ω -agatoxins usually decrease neurotransmitter release while μ -agatoxins increase it. This apparent puzzle could be explained by the different phases of venom action. In the first, μ -agatoxins would have a quicker and reversible effect, while the ω -agatoxins would have a slower and irreversible effect (Olivera et al., 1994).

Besides ω-agatoxins, the venom of the spider *A. aperta* is the source of other important Ca²⁺ channel blockers (Llinás et al., 1989, 1992). FTX (molecular weight 200–400 Da) blocks Ca²⁺ channels in Purkinje cells and the squid giant synapse. FTX also inhibits acetylcholine release from the

neuromuscular junction of mice and humans, and catecholamine release from bovine adrenal chromaffin cells (Protti et al., 1996; Uchitel et al., 1992; Duarte et al., 1993). The synthetic analog FTX 3–3, which has the same structure as the natural toxin, and sFTX 3–3, an amide-like analogue, have similar activities and are selective for P-type Ca²⁺ channels. Norris et al. (1996) have shown that FTX3–3 (EC₅₀=130 μ M) and sFTX3-3 (EC₅₀=240 μ M) antagonize P-type, N-type, and L-type Ca²⁺ channels in mammalian Purkinje cells and superior cervical ganglia neurons.

Another example of an acylpolyamine toxin is CNS2103, from *Dolomedes okefinokensis* spider venom, which reversibly blocks L-type and R-type Ca²⁺ channels in N1E-115 cells, without affecting the function of Na⁺, K⁺, or T-type Ca²⁺ channels (Kobayashi et al., 1992; Stromgaard et al., 2001).

ω-P. nigriventer peptide toxin 3-3 (PnTx3-3) decreases intracellular release of Ca²⁺ induced by KCl depolarization in rat cerebrocortical synaptosomes. In addition, it blocks the synaptic exocytosis of vesicles by inhibition of P/O-type Ca^{2+} channels (EC₅₀ = 1 nM) (Guatimosim et al., 1997). In whole cell patch clamp experiments in cerebellar granule neurons, this toxin inhibits high-voltage-activated Ca²⁺ channels, being more efficient against P/Q-type and R-type (Leão et al., 2000). Cassola et al. (1998) have described ω phonetoxin IIA, also isolated from *P. nigriventer* spider venom. This toxin is a peptide of 8 kDa, 76 amino acid residues, and seven disulfide bridges, which blocks N-type high-voltage-activated Ca2+ channels in rat dorsal root ganglion neurons ($K_d = 0.7$ nM) and L-type channels in rat β pancreatic cells ($K_d = 28$ nM). It shows significant homology with the ω -agatoxin III family, and it has been suggested that this toxin interacts with ω-conotoxin-binding sites (Dos Santos et al., 2002). Additionally, peptides that inhibit L-type Ca²⁺ channels from *P. nigriventer* venom (as Tx3-2 and Tx3-5) have been characterized (Kalapothakis et al., 1998).

SNX-325 is a peptide from the venom of the Asian spider Segestria florentina that inhibits the majority of Ca²⁺ currents (at 2 µM), without affecting Na⁺ or K⁺ currents. At 10 nM, SNX-325 has been shown to be a selective blocker of the cloned expressed class B N-type Ca²⁺ channels. SNX-325 is approximately equipotent with the N-type Ca²⁺ channel-selective ω-conopeptides (GVIA and MVIIA) in blocking the K⁺-induced release of [³H]norepinephrine from hippocampal slices and in blocking the barium current through cloned expressed N-type Ca²⁺ channels in oocytes (Newcomb et al., 1995). Other three polypeptides with insecticidal activity have been characterized in the spider venom S. florentina. They are F5.5, F5.6, and F5.7, with molecular weight of 4973, 4993, and 5159 Da, respectively. These peptides cause complete flaccid paralysis of *H. virescens* (Lepidoptera: Noctuidae) larvae, without affecting vertebrates. Some structural comparisons have suggested that this family of polypeptides might share structural and functional relationships with other small

spider neurotoxins, several of which are known to be highly selective agonists/antagonists of different voltage-dependent Ca²⁺ channels (Lipkin et al., 2002).

The peptide ω -grammotoxin SIA (GrTx) (36 amino acid residues with three disulfide bridges) was isolated from the venom of the spider *G. spatulata*. It has a potent action and apparent specificity for P-type and N-type Ca²⁺ channels (EC₅₀=180 nM). It causes a complete, dose-dependent inhibition of K⁺-evoked influx of ⁴⁵Ca²⁺ into either rat or chick brain synaptosomes. Similar inhibitory profiles are generated for the inhibition of the release of either D-[³H]aspartate or [³H]norepinephrine from rat hippocampal, or of [³H]norepinephrine from chick cortical brain slice preparations, evoked by K⁺ depolarization (Lampe et al., 1993). Other authors have suggested that this toxin also acts on Q-type channels in rat hippocampal neurons (Piser et al., 1995; Keith et al., 1995).

Finally, insecticidal toxins active on Ca²⁺ channels have been isolated from the spider *H. curta* venom (*Hololena* toxin, 16 kDa) (Bowers et al., 1987), *H. versuta* venom (ω-atracotoxin, peptides with 36–37 amino acid residues) (Wang et al., 1999), and *Plectreurys tristes* venom (PLTXs, 6–7 kDa) (Branton et al., 1987). Crude venom from *Anemesia* spider species contains components that increase neuronal excitability, which in part appears to be mediated by enhancing Ca²⁺ influx through N-type voltage-activated Ca²⁺ channels (Kalikulov et al., 2001).

There has not been a great deal of literature describing wasp toxins that directly alters the functions of Ca^{2+} or K^+ channels.

5. Toxins acting on glutamate receptors

L-glutamate is considered to be the most important mediator of excitatory signals in both the mammalian central nervous system and the insect peripheral nervous system. Glutamate is also involved in most aspects of mammalian brain function, including cognition, memory, and learning (Fonnum, 1984; Collingridge and Lester, 1989).

Most neurons and glial cells have glutamate receptors in their plasma membranes (Bergles et al., 2000). These proteins are categorized into two major classes, according to their differential intracellular signal transduction mechanisms and molecular homologies, namely, metabotropic receptors (mGluRs) and ionotropic receptors (iGluRs) (for reviews, see Ozawa et al., 1998; Coutinho and Knopfel, 2002).

Metabotropic receptors mediate their function via intracellular G-proteins and are divided into eight functionally distinct receptors, referred to as mGluR1-mGluR8 (Pin and Duvoisin, 1995; Conn and Pin, 1997).

On the other hand, ionotropic receptors are ion channels permeable to particular cations, and are subclassified into N-methyl-D-aspartate (NMDA), α -amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA; historically termed the "quisqualate receptor"), and kainate receptors

(Hollmann and Heinemann, 1994). Each of these proteins is a glutamate-gated ion channel. The NMDA and AMPA receptors mediate the bulk of fast excitatory synaptic transmission and coexist at many synapses in the brain. NMDA receptors differ from AMPA receptors in two important ways: (a) NMDA-gated channels are permeable to Ca²⁺ and Na⁺, while AMPA receptors are permeable to both Na⁺ and K⁺; and (b) inward ionic current through NMDA-gated channels is voltage-dependent. Kainate receptors also exist throughout the brain, but their functions are poorly understood. A major difficulty in the study of the functions of kainate receptors has been the inability to distinguish between individual subunits, and the lack of drugs to distinguish between kainate and AMPA receptors (Bear et al., 1996).

Excessive activation of glutamate receptors is involved and partly responsible for the brain damage found following a stroke and also in several neurodegenerative chronic diseases such as Huntington, Alzheimer, Parkinson, amyotropic lateral sclerosis, ischemia, and epilepsy (Coutinho-Netto et al., 1981; Olney, 1990; Vajda, 2002). The development of glutamate antagonists capable of blocking specific subtypes of glutamate receptors should therefore be of major importance for the generation of therapies for these diseases.

The characterization of glutamate receptor antagonists isolated from spider venoms began in the early 1980s (Table 4). Kawai et al. (1982, 1983, 1991) characterized the toxin Joro spider toxin (JSTX), isolated from the venom of the *Nephila clavata*, which suppresses excitatory postsynaptic potentials (EPSPs) in lobster neuromuscular junction and specifically blocks AMPA receptors in cortical synaptosomes. This pioneering work led to several publications on antagonists of ionotropic glutamate receptor, derived from spider and wasp venoms. Because up to this date compounds derived from venoms that act on metabotropic receptors have not been reported, we will focus interest on described pharmacological actions of spider and wasp toxins on ionotropic receptors.

Usherwood colleagues have extensively characterized the venoms of the spiders Argiope trifasciata and Araneus gemma, which contain components that act as antagonists of the glutamate receptor in the neuromuscular junction of the locust. Ionophoretic and neurally evoked twitch contraction of locust metathoracic retractor unguis muscle studies indicate that the venoms act only when the glutamate receptor channel complex is activated by an agonist. The authors concluded that the active principles in these spider venoms were molecules of low molecular weight (less than 1000 Da) (Usherwood et al., 1984). Subsequently, these toxins were characterized as the previously cited acylpolyamines, which nowadays are a well-established, wide source of glutamate receptor antagonists in these venoms (Blagbrough et al., 1992; Green et al., 1996).

A mixture of low-molecular-weight compounds, known as argiotoxins, was obtained from the venom of the orb

Table 4
Toxins acting on glutamate receptors

Toxin	Source	Chemistry	Main action(s)	References
Argiopines, argiopinines, and pseudoargiopinines	Argiope sp.	Acylpolyamine	Block glutamate-activated and kainate- activated ion currents in a voltage- dependent manner; at higher concentrations, they also block acetylcholine-gated receptor channels	Kiskin et al. (1989)
Argiotoxin-636 (Arg-636), α -agatoxin-489 (Agel-489), and α -agatoxin-505 (Agel-505)	A. lobata and A. aperta	Acylpolyamine, 636, 489, and 505 Da, respectively	Potent AMPA and/or NMDA receptors blockers in cultured cerebellar granule cells	Adams et al. (1989), Fagni and Bockaert (1995), Williams (1993)
Joro spider toxin (JSTX)	N. clavata	Acylpolyamine	Blocks specifically AMPA receptors in cortical synaptosomes in a noncompetitive manner	Kawai et al. (1982, 1983)
Joro spider toxin 3 (JSTX-3)	N. clavata	Acylpolyamine	Specific antagonist of AMPA receptors in the mammalian central nervous system	Himi et al. (1990)
Nephilatoxin-3 (NSTX-3)	N. maculata	Acylpolyamine	Noncompetitive blocker of glutamate receptor	Blagbrough et al. (1996)
δ-Philanthotoxin (δ-PhTX)	P. triangulum	Acylpolyamine	Blocks open channels gated both by junctional and extrajunctional glutamate receptors on locust muscle; in <i>Xenopus</i> oocytes expressing receptor clones GluR1, GluR2, and NMDA, kainate and NMDA elicited antagonist-reversible responses in a noncompetitive manner	Clark et al. (1982), Eldefrawi et al. (1988), Brackley et al. (1993)
P. nigriventer peptide toxin 4(5-5)	P. nigriventer	Peptide, 5175 Da	Reversibly inhibits NMDA receptor- generated currents in rat hippocampal neurons	De Figueiredo et al. (2001)

weaver spider *Argiope aurantia*. They block neuromuscular transmission and cause reversible paralysis in insects. Their structures reveal common features and consist of a basic residue of arginine, an acylpolyamine chain, and an asparagine that is connected to an aromatic moiety (Adams et al., 1987). Jackson and Parks (1989) have shown that acylpolyamine toxins with amino acid(s) in their structure have similar modes of action at invertebrate neuromuscular junctions, by exerting noncompetitive blocking of AMPAsensitive receptors.

Several compounds have also been purified from the venom of the spider *Argiope lobata*, which selectively block ionic currents elicited by glutamate and its agonist kainate in rat hippocampal neuron membranes. Three groups of these compounds, argiopine, argiopinines, and pseudoargiopinines, block glutamate-activated and kainate-activated ion currents in a voltage-dependent manner (Kiskin et al., 1989).

JSTX-3 (synthetic Joro spider toxin), nephilatoxin (NSTX) isolated from *Nephila maculata* spider venom, and argiotoxin-636 are structurally related to Joro spider toxin. Intracerebroventricular injections of high doses of JSTX-3 (more than 12 nmol per brain) were shown to increase motor activity of mice. However, at lower doses (4.7 nmol per brain), the toxin did not generate any atypical behavior, although it did specifically antagonize AMPA-induced convulsions, suggesting JSTX-3 as a selective antagonist of AMPA receptors in the mammalian central nervous system (Himi et al., 1990).

The acylpolyamine toxin argiotoxin-636 has been shown to block isolated NMDA receptors in cultured cerebellar granule cells by decreasing the probability of channel opening in a voltage-dependent manner and NMDA-activated ion channels expressed in *Xenopus* oocytes (Draguhn et al., 1991; Fagni and Bockaert, 1995). Still, argiotoxin-636 acts as an AMPA open channel blocker in a voltage-dependent manner and discriminates between the functionally diverse AMPA receptors (Herlitze et al., 1993).

α-Agatoxin-489 (Agel-489) and α-agatoxin-505 (Agel-505) are acylpolyamine toxins isolated from A. aperta spider venom. A α-agatoxin-489 (0.1 nM-1 μM) antagonizes activated NMDA receptor and/or open NMDA-activated ionic channels in a voltage-dependent manner in rat hippocampus neurons (Kiskin et al., 1992). α-Agatoxin-489 and α -agatoxin-505 (3-30 μ M) enhance the binding of [3H]dizocilpine (MK-801) to NMDA receptors on membranes prepared from rat brain. However, higher concentrations of both toxins inhibit the binding of this drug. At concentrations considerably lower than those inhibiting [³H]dizocilpine binding in membranes, α-agatoxin-505 inhibits responses to NMDA with an EC₅₀ of 13 nM in *Xenopus* oocytes voltage-clamped at -70 mV, in a strongly voltage-dependent manner. These actions may be attributed to an interaction with an Mg²⁺ binding site (Williams, 1993).

The *P. nigriventer* peptide toxin 4(5–5) [PnTx4(5–5)] is a single-chain insecticidal molecule composed of 47 amino

acid residues, including 10 cysteines, that reversibly inhibits NMDA receptor-generated currents in rat hippocampal neurons. This toxin is highly toxic to the housefly (*Musca domestica*), cockroach (*Periplaneta americana*), and cricket (*Acheta domesticus*) (De Figueiredo et al., 2001).

Regarding wasps, at least four acylpolyamine toxins named α-philanthotoxin, β-philanthotoxin, γ-philanthotoxin, and δ -philanthotoxin (PhTX) were purified from the venom of the digger wasp *Philanthus triangulum*. δ-philanthotoxin was shown to block EPSP on locust muscle by blocking of open channels gated by both junctional and extrajunctional glutamate receptors (Clark et al., 1982; Stromgaard et al., 1999). At that time, it was not known what type of glutamate receptor was involved in the process, until it was shown that δ -philanthotoxin did not antagonize CA1 field EPSPs mediated by AMPA/kainate receptors at Schaffer collateral/commissural CA1 synapses. If this toxin was present during tetanization, it was able to suppress the induction of the long-term potentiation, probably by antagonizing the postsynaptic NMDA receptor (Matthies et al., 1992).

6. Toxins acting on other neurotransmitter receptors

Although most publications regarding toxins acting on neurotransmitter receptors are related to glutamate receptors, some have been described to act on acetylcholine receptors.

The venom of *P. triangulum* has been shown to reduce twitch tension and tetanic contractions in a rat phrenic nerve—diaphragm preparation. It also reduces the temperature sensitivity and voltage sensitivity of acetylcholine receptoractivated ion channels, at the motor end plate, and shortens the decay time of the miniature end-plate currents, in analogy to a block described for the δ-philanthotoxin on insect glutamate-activated channels (Van Wilgenburg et al., 1984). In addition, in *Xenopus* oocytes expressing rat brain RNA or RNA transcribed from the excitatory amino acid receptor clones 1 and 2 and NMDA receptor 1, kainate antagonist and NMDA antagonist responses elicited by δ-philanthotoxin are reversible and noncompetitive (Brackley et al., 1993).

The parasitoid wasp *Ampulex compressa* stings the first thoracic ganglion of cockroaches and induces a transient flaccid paralysis of the front legs and an excessive grooming followed by a 2- to 5-week-long lethargic state. Assays have demonstrated that the flaccid paralysis is mainly accounted for by the presence of an active component in the venom, which induces a postsynaptic block of nicotinic receptors (Haspel and Libersat, 2003; Libersat, 2003). Antagonists of insect nicotinic receptors were also found in solitary wasp venoms (*Campsomeriella annulata annulata, Carinoscolia melanosoma fascinata*, and *Megacampsomeris prismatica*); these toxins were characterized as bradykinins, which play a major role in the paralyzing action for prey capture (Konno et al., 2002).

7. Toxins acting on other synaptic functions: neurotransmitter release and transport

The nerve cell body produces enzymes that are involved in the synthesis of most neurotransmitters, subsequently stored in synaptic vesicles by a proton gradient-dependent uptake system. At the synapse, neurotransmitters are released via a Ca²⁺-triggered exocytotic fusion of synaptic vesicles with the presynaptic plasma membrane. Following its exocytotic release, neurotransmitters achieve specific receptors and mediate excitatory or inhibitory neurotransmission (Danbolt, 2001). Compounds acting on Ca²⁺ channels, like some toxins described in Section 3, can affect neurotransmitter release. In addition, other toxins can affect neurotransmitter release by interaction with specific proteins involved in the cycle of synaptic vesicles. Others can form pores in plasma membrane that are permeable to cations (Henkel and Sankaranaravanan, 1999).

The action of neurotransmitters in the synaptic cleft is usually terminated by high-affinity transporters, localized in the membrane of neuronal and glial cells and are typically dependent on the Na⁺ gradient (Danbolt, 2001). Neurotransmitter transporters are also involved in the modulation of electrical signals, transport of water and ions, and, recently, it has been proposed to play a dynamic role in control of brain excitability (Amara and Fontana, 2002; Richerson and Wu, 2003). It has also been proposed that changes in the ion concentration in the plasmatic membrane alter transport function up to the point of reversing its activity, resulting in net neurotransmitter release (Attwell et al., 1993). This release is distinguished from exocytotic release by being independent of Ca²⁺ influx via selective voltage-dependent channels (Reis et al., 1999; Phillis and O'Regan, 2003).

Excessive stimulation or blockade of neurotransmitter release and transport may result in a disturbance of the neural synapse. It is therefore perhaps not surprising that receptors located on membranes, ion channels, and proteins involved in neurotransmitter release are targeted by most toxins. However, toxins acting directly on neurotransmitter transporters have not been as widely described; on the other hand, new studies have pointed to the fact that this possibly constitutes a mechanism of action displayed by these toxins (Fontana et al., 2003).

A group of high-molecular-weight polypeptides, purified from the venom of the black widow spider *Latrodectus* species, induces massive neurotransmitter secretion from affected nerve endings. These compounds can be highly selective for vertebrates (α -latrotoxin, α -LTX), insects (α -latroinsectotoxin, LIT), or crustaceans (α -latrocrustatoxin, α -LCT), resulting in a blockade of nerve transmission and leading to muscle paralysis (Pinto and Rothlin, 1974; Henkel and Sankaranarayanan, 1999).

The best known of these toxins is α -latrotoxin, and models of its action have been proposed to explain the massive release of neurotransmitters induced in a variety of neurosecretory cells. One of these models proposes that

the toxin inserts itself into the phospholipid bilayer, where its molecules aggregate, forming a constantly open channel-like pore, permeable to several cations including Ca²⁺, Na⁺, K⁺, and Mg²⁺, by triggering exocytosis (Finkelstein et al., 1976; Hurlbut et al., 1994; Barnett et al., 1996). Cryoelectron microscopy showed that α -latrotoxin inserts itself into a bilayer of liposomes in a tetrameric form. These studies have also extended our knowledge about the size of the α -latrotoxin pore now estimated to be 10–25 Å in diameter (Krasilnikov and Sabirov, 1992; Orlova et al., 2000). These data help to explain why small molecules, apart from ions, pass in or out of cells. Studies have been performed in order to obtain more information about the precise orientation of the tetramer in membranes (Ichtchenko et al., 1998; Davletov et al., 1998; Khvotchev and Sudhof, 2000).

By using molecular techniques, it has also been discovered that α -latrotoxin interacts with two types of receptors on membranes, of different structures and belonging to distinct families of proteins. Neurexin- 1α binds α -latrotoxin in a Ca²⁺-dependent manner and is specifically expressed in nerve tissue; CIRL/latrophilin is a Ca²⁺-independent receptor for α -latrotoxin and belongs to the family of G-protein-coupled receptors (Ushkaryov et al., 1992; Davletov et al., 1996; Krasnoperov et al., 1996; for a review of the actions of α -latrotoxin, see Ushkaryov, 2002).

Neurexin- 1α , a 160- to 220-kDa protein, has a large extracellular domain, which seems to be related to an adhesion function. Its intracellular domain binds to the cytoplasm domain of synaptotagmin, a Ca^{2^+} sensor involved in the final stages of exocytosis, and to $\text{Ca}^{2^+/}$ calmodulin-dependent serine protein kinase, suggesting a role in intracellular signaling of exocytosis (Petrenko et al., 1991; Ushkaryov et al., 1992; Geppert et al., 1994). The association of α -latrotoxin to neurexin- 1α may be a way for the toxin to induce massive neurotransmitter release via second messengers.

CIRL/latrophilin is a glycosylated polypeptide of 120 kDa that binds to α -latrotoxin, in a Ca²⁺-dependent or Ca²⁺-independent manner, depending on the cell type. CIRL/latrophilin is tightly associated with syntaxin 1A, suggesting that it could be recruited to vesicle release sites. This protein triggers exocytosis, possibly via a second messenger mechanism whose pathway is still not well established. This is the main model for the explanation of the massive Ca²⁺-independent release of neurotransmitter induced by α -latrotoxin in some types of cells (Krasnoperov et al., 1997).

Although there still exists uncertainty about the mode of action of α -latrotoxin, it should be considered that the toxin acts in different ways depending on the targeted cell type and on concentration. For instance, it is more probable that at higher concentrations, the toxin acts by forming an ion channel, and at lower concentrations, the toxin acts by a mechanism dependent on receptors like neurexin- 1α and/or CIRL/latrophilin (Henkel and Sankaranarayanan, 1999).

 α -Latrocrustotoxin (α -LCT), another toxin from Latrodectus species, acts as a lethal presynaptic neurotoxin in the central and peripheral nervous systems of the crayfish, causing distortions of its electromyography and motor activity pattern (LD₅₀=0.1 μ g/g of body weight). In the isolated nerve-muscle preparation, this toxin causes intense transmitter release, resulting in the complete blockade of neuromuscular transmission and destructive alterations in the nervous cells (Burmistrov et al., 1997). α-Latrocrustotoxin binds to a G-protein-coupled receptor found in invertebrates independently of Ca²⁺. However, it requires extracellular Ca²⁺ to stimulate exocytosis via G-proteins and second messengers. The toxin produces an increase in the frequency of spontaneously occurring miniature excitatory postsynaptic potentials at crayfish neuromuscular junctions, without affecting their amplitude distribution. It has been suggested that the induction of an extracellular Ca²⁺ influx into nerve terminals may explain the action of α-latrocrustotoxin on transmitter release at crayfish neuromuscular junctions (Elrick and Charlton, 1999).

 α -Latroinsectotoxin, at nanomolar concentrations, causes an increase in the frequency of miniature excitatory post-synaptic potentials in neuromuscular preparations of blowfly larvae. It is believed that the α -latroinsectotoxin molecules incorporate into the lipid bilayer membrane in an oriented manner, and that dimerization might be a prerequisite for channel formation. The ion channels formed are cation-selective; the most permeable ions are Ba²⁺, Ca²⁺, and Mg²⁺ (Magazanik et al., 1992; Shatursky et al., 1995).

It has been suggested that the selectivity of α -latrotoxin and α -latroinsectotoxin could be due to differences in the structure of neurotoxin receptors in nerve endings of vertebrates and insects, respectively, but both toxins increase the conductance of bilayer lipid membranes by inducing channel-like activity (Magazanik et al., 1992).

The crude venom of *Steatoda paykulliana* spider increases the release of neurotransmitters from PC12 cells, probably by forming pores permeable to monovalent and bivalent cations (Cavalieri et al., 1987).

The *P. nigriventer* peptide toxin 3-6 (PnTx3-6) abolishes Ca²⁺-dependent glutamate release (EC₅₀=74.4 nM) by inactivating intrasynaptosomal P/Q-type Ca²⁺ channels (Vieira et al., 2003).

Regarding wasps, mastoparan toxins, which are usually found as tetradecapeptides, have been reported to be the major peptide class in the venom of many species of hornet wasps (Nakajima et al., 1985). Several such compounds have been characterized as causing release of histamine, GABA, serotonin, and other chemical substances, such as hormones, from several cell types (Ohara-Imaizumi et al., 2001; Wilson and Guild, 2002; Kruger et al., 2003). The main action of mastoparan appears to involve multiple signal transduction pathways through G-proteins, leading to phospholipase C activation and phosphatidyl inositol breakdown (Nakajima et al., 1985).

Finally, orientotoxin is a compound isolated from the giant hornet *Vespa orientalis* venom, which has lysophospholipase activity and blocks the release of neurotransmitters from presynaptic nerve membranes (Tuichibaev et al., 1984).

Regarding transporters, it has been demonstrated that Joro spider toxin, cited above as a specific blocker of glutamate receptors, inhibits glutamate uptake by synaptosomes in a dose-dependent manner, without altering glycine, leucine, and tyrosine uptake (Pan-Hou et al., 1989). In contrast to the reported inhibitory effects of acylpolyamine toxins on high-affinity neurotransmitter uptake, two acylpolyamine-like spider toxins JSTX-3 and NSTX-3 significantly increase the high-affinity uptake of glutamate as demonstrated by high-resolution autoradiography (Van Marle et al., 1989).

The *P. nigriventer* peptide fraction 4 (PnTx4) inhibits glutamate uptake in a dose–response manner in rat cortical synaptosomes (EC₅₀=2.35 μ g/ml). This fraction is composed of seven peaks, referred to as *P. nigriventer* peptide toxins 4(1–7) [PnTx4(1–7)]. Among them, *P. nigriventer* peptide toxins 4(3–7) also inhibit glutamate uptake (Mafra et al., 1999). *P. nigriventer* peptide toxin 3–4 from the same venom has been reported to decrease glutamate release from synaptosomes. This toxin also inhibits glutamate uptake in synaptosomes in a time-dependent manner, leading to a decrease in Ca²⁺-independent glutamate release, dependent on the redox state of cysteine residues of the toxin (Reis et al., 1999, 2000).

Two fractions isolated from Parawixia bistriata (P. bistriata fraction A2) and Scaptocosa raptoria (S. raptoria toxin 1; SrTx1) spiders venoms were demonstrated to have important anticonvulsive effects when injected intracerebroventricularly in rats. S. raptoria toxin 1 and P. bistriata fraction A2 abolished rat convulsive tonic-clonic seizures induced by convulsant drugs. They also reduced the mortality of experimental animals, most probably due to an inhibitory effect on GABA uptake, as shown by experiments on rat synaptosomes (Rodrigues et al., 2001; Cairrão et al., 2002). Still, the crude venom P. bistriata spider was shown to paralyze termites in a dose-dependent manner, and to stimulate glutamate and inhibit GABA uptakes in rat cortical synaptosomes (Fontana et al., 2000, 2003). Recently, a compound purified from this venom, referred to as P. bistriata toxin 1.2.3 (PbTx1.2.3), was shown to stimulate glutamate uptake into rat cortical synaptosomes by a mechanism that appears to be independent of glutamate receptor activation. In addition, P. bistriata toxin 1.2.3 prevents neuronal death during retinal acute ischemia, implying that the enhanced transport activity probably limits the excitotoxicity (Fontana et al., 2003).

Regarding wasp toxins acting on neurotransmitter transporters, a few reports on the venom of *P. triangulum* have been made. In insects, the venom has central and peripheral effects; the latter consist of a presynaptic as well as a postsynaptic blockade of skeletal neuromuscular transmission. The presynaptic block is probably caused by an

inhibition of glutamate uptake, producing paralysis of the prey (Piek, 1982). Two components of the venom of P. triangulum, β -philanthotoxin and δ -philanthotoxin, reduce the high-affinity uptake of glutamate in rat hippocampus (10 μ M for both). The second one reduces the uptake more efficiently than β -philantotoxin (Van Marle et al., 1986).

In addition, the venom of the social wasp *Agelaia vicina* nearly abolishes glutamate and GABA uptake in a noncompetitive manner in rat cerebral cortex synaptosomes, suggesting that some components of this venom might be a useful tool for further characterization of GABA and glutamate uptake systems (Pizzo et al., 2000).

Finally, peptides of 9–18 amino acid residues containing a bradykinin-like sequence, known as kinins, are found in wasp venom. Kinins are neurotoxic components that act on the insect central nervous system, causing a presynaptic block of the cholinergic transmission by irreversible depletion of neurotransmitters, probably caused by a noncompetitive inhibition of choline uptake (Piek, 1991).

8. Conclusions

Toxins are evolutionary products acting to immobilize prey and also used in self-defense. Several toxins show high specificity and affinity for ion channels, receptors, and transporters in invertebrates and vertebrates. The study of neurotoxins has come into evidence over the last 30 years. These molecules represent an incredibly rich source of probes useful for understanding synaptic transmission events, for identifying insecticide targets, and for aiding in the design of novel drugs for the treatment of neurological disorders.

Acknowledgements

The authors thank Dr. Ole V. Mortensen (Vollum Institute, OHSU, OR, USA), Dr. Adolfo Max Rothschild, Dr. J.E. de Sales Roselino, and Dr. Constance Oliver (FMRP-USP) for critical reading of this manuscript. We are also grateful to FAPESP for financial support (scholarships to R.O.B. and A.B.P.).

References

Abe, T., Kawai, N., Niwa, A., 1982. Purification and properties of a presynaptically acting neurotoxin, mandaratoxin, from hornet (*Vespa man-darinia*). Biochemistry 21, 1693–1697.

Adams, M.E., Carney, R.L., Enderlin, F.E., Fu, E.T., Jarema, M.A., Li, J.P., Miller, C.A., Schooley, D.A., Shapiro, M.J., Venema, V.J., 1987. Structures and biological activities of three synaptic antagonists from orb weaver spider venom. Biochem. Biophys. Res. Commun. 148, 678–683.

Adams, M.E., Herold, E.E., Venema, V.J., 1989. Two classes of channel-specific toxins from funnel web spider venom. J. Comp. Physiol., A 164, 333–342.

Adams, M.E., Bindokas, V.P., Hasegawa, L., Venema, V.J., 1990. ω-Agatoxins: novel calcium channel antagonists of two subtypes from

- funnel web spider (*Agelenopsis aperta*) venom. J. Biol. Chem. 265, 861–867.
- Amara, S.G., Fontana, A.C., 2002. Excitatory amino acid transporters: keeping up with glutamate. Neurochem. Int. 41, 313–318.
- Attwell, D., Barbour, B., Szatkowski, M., 1993. Nonvesicular release of neurotransmitter. Neuron 11, 401–407.
- Baltazar, G., Ladeira, I., Carvalho, A.P., Duarte, E.P., 1997. Two types of ω-agatoxin IVA-sensitive Ca²⁺ channels are coupled to adrenaline and noradrenaline release in bovine adrenal chromaffin cells. Pflugers. Arch. 434, 592–598.
- Barnett, D.W., Liu, J., Misler, S., 1996. Single-cell measurements of quantal secretion induced by α-latrotoxin from rat adrenal chromaffin cells: dependence on extracellular Ca²⁺. Pflugers. Arch. 432, 1039–1046.
- Bean, B.P., 1989. Classes of calcium channels in vertebrate cells. Annu. Rev. Physiol. 51, 367–384.
- Bear, M.F., Connors, B.W., Paradiso, M.A., 1996. Neuroscience: Exploring the Brain, first ed. Williams and Wilkins, Canada.
- Bergles, D.E., Roberts, J.D., Somogyi, P., Jahr, C.E., 2000. Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature 405, 187–191.
- Bernard, C., Legros, C., Ferrat, G., Bischoff, U., Marquardt, A., Pongs, O., Darbon, H., 2000. Solution structure of HpTX2, a toxin from *Hetero-poda venatoria* spider that blocks Kv4.2 potassium channel. Protein Sci. 9, 2059–2067.
- Birnbaumer, L., Qin, N., Olcese, R., Tareilus, E., Platano, D., Costantin, J., Stefani, E., 1998. Structures and functions of calcium channel beta subunits. J. Bioenerg. Biomembr. 30, 357–375.
- Blagbrough, I.S., Brackley, P.T., Bruce, M., Bycroft, B.W., Mather, A.J., Millington, S., Sudan, H.L., Usherwood, P.N., 1992. Arthropod toxins as leads for novel insecticides: an assessment of polyamine amides as glutamate antagonists. Toxicon 30, 303–322.
- Blagbrough, I.S., Moya, E., Taylor, S., 1994. Polyamines and polyamine amides from wasps and spiders. Biochem. Soc. Trans. 22, 888–893.
- Blagbrough, I.S., Moya, E., Walford, S.P., 1996. Practical, convergent total synthesis of polyamine amide spider toxin NSTX-3. Tetrahedron Lett. 37, 551-554.
- Bloomquist, J.R., Kinne, L.P., Deutsch, V., Simpson, S.F., 1996. Mode of action of an insecticidal peptide toxin from the venom of a weaving spider (*Diguetia canities*). Toxicon 34, 1072–1075.
- Blum, M.S., 1981. Chemical Defenses in Arthropods. Academic Press, New York, NY, p. 562.
- Bowers, C.W., Phillips, H.S., Lee, P., Jan, Y.N., Jan, L.Y., 1987. Identification and purification of an irreversible presynaptic neurotoxin from the venom of the spider *Hololena curta*. Proc. Natl. Acad. Sci. U. S. A. 84, 3506–3510.
- Brackley, P.T., Bell, D.R., Choi, S.K., Nakanishi, K., Usherwood, P.N.J., 1993. Selective antagonism of native and cloned kainate and NMDA-R by polyamine toxins. Pharmacol. Exp. Ther. 266, 1573–1580.
- Branton, W.D., Kolton, L., Jan, Y., Jan, L.Y., 1987. Neurotoxins from Plectreurys spider venom are potent presynaptic blockers in Drosophila. J. Neurosci. 7, 4195–4200.
- Brown, M.R., Sheumack, D.D., Tyler, M.I., Howden, M.E., 1988. Amino acid sequence of versutoxin, a lethal neurotoxin from the venom of the funnel-web spider *Atrax versutus*. Biochem. J. 250, 401–405.
- Burmistrov, Y.M., Shuranova, Z.P., Artiukhina, N.I., 1997. Effects of black widow spider venom and latrocrustatoxin on crustacean nerve cells: electrophysiological and ultrastructural study. Gen. Pharmacol. 28, 159–166.
- Cairrão, M.A.R., Ribeiro, A.M., Pizzo, A.B., Fontana, A.C.K., Beleboni, R.O., Coutinho-Netto, J., Miranda, A., Santos, W.F., 2002. Anticonvulsant and GABA uptake inhibition properties of venom fractions from the spiders *Parawixia bistriata* and *Scaptocosa raptoria*. Pharm. Biol. 40, 472–477.
- Carneiro, A.M., Kushmerick, C., Koenen, J., Arndt, M.H., Cordeiro, M.N., Chavez-Olortegui, C., Diniz, C.R., Gomez, M.V., Kalapothakis, E., Prado, M.A., Prado, V.F., 2003. Expression of a functional recombinant *Phoneutria nigriventer* toxin active on K⁺ channels. Toxicon 41, 305–313.

- Cassola, A.C., Jaffe, H., Fales, H.M., Castro, A.S., Magnoli, F., Cipolla-Neto, J., 1998. ω-Phonetoxin-IIA: a calcium channel blocker from the spider *Phoneutria nigriventer*. Pflugers Arch. 436, 545–552.
- Catterall, W.A., 1995. Structure and function of voltage-gated ion channels. Annu. Rev. Biochem. 64, 493–531.
- Catterall, W.A., Beneski, D.A., 1980. Interaction of polypeptide neurotoxins with a receptor site associated with voltage-sensitive sodium channels. J. Supramol. Struct. 14, 295–303.
- Catterral, W.A., 2000. From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron 26, 13–25
- Cavalieri, M., D'Urso, D., Lassa, A., Pierdominici, E., Robello, M., Grasso, A., 1987. Characterization and some properties of the venom gland extract of a theridiid spider (*Steatoda paykulliana*) frequently mistaken for black widow spider (*Latrodectus tredecimguttatus*). Toxicon 25, 965–974.
- Cestele, S., Catterall, W.A., 2000. Molecular mechanisms of neurotoxin action on voltage-gated sodium channels. Biochimie 82, 883–892.
- Clark, R.B., Donaldson, P.L., Gration, K.A., Lambert, J.J., Piek, T., Ramsey, R., Spanjer, W., Usherwood, P.N., 1982. Block of locust muscle glutamate receptors by δ -PTX occurs after receptor activations. Brain Res. 241, 105–114.
- Coetzee, W.A., Amarillo, Y., Chiu, J., Chow, A., Lau, D., McCormack, T., Moreno, H., Nadal, M.S., Ozaita, A., Pountney, D., Saganich, M., Vega-Saenz de Miera, E., Rudy, B., 1990. Molecular diversity of K⁺ channels. Ann. N.Y. Acad. Sci. 868, 233–285.
- Collingridge, G.L., Lester, R.A., 1989. Excitatory amino acid receptors in the vertebrate central nervous system. Pharmacol. Rev. 41, 143–210.
- Conn, P.J., Pin, J.P., 1997. Pharmacology and functions of metabotropic glutamate receptors. Annu. Rev. Pharmacol. Toxicol. 37, 205–237.
- Corzo, G., Escoubas, P., Stankiewicz, M., Pelhate, M., Kristensen, C.P., Nakajima, T., 2000. Isolation, synthesis and pharmacological characterization of δ-palutoxins IT, novel insecticidal toxins from the spider *Paracoelotes luctuosus* (Amaurobiidae). Eur. J. Biochem. 267, 5783–5795.
- Coutinho, V., Knopfel, T., 2002. Metabotropic glutamate receptors: electrical and chemical signaling properties. Neuroscientist 8, 551–561.
- Coutinho-Netto, J., Abdul-Ghani, A.S., Collins, J.F., Bradford, H.F., 1981.
 Is glutamate a trigger factor in epileptic hyperactivity? Epilepsia 22, 289–296.
- Danbolt, N.C., 2001. Glutamate uptake. Prog. Neurobiol. 65, 1-105.
- Davletov, B.A., Shamotienko, O.G., Lelianova, V.G., Grishin, E.V., Ushkaryov, Y.A., 1996. Isolation and biochemical characterization of a ${\rm Ca}^{2\,^{+}}$ -independent α -latrotoxin-binding protein. J. Biol. Chem. 271, 23239–23245.
- Davletov, B.A., Meunier, F.A., Ashton, A.C., Matsushita, H., Hirst, W.D., Lelianova, V.G., Wilkin, G.P., Dolly, J.O., Ushkaryov, Y.A., 1998. Vesicle exocytosis stimulated by α-latrotoxin is mediated by latrophilin and requires both external and stored Ca²⁺. EMBO J. 17, 3909–3920.
- De Figueiredo, S.G., de Lima, M.E., Cordeiro, M.N., Diniz, C.R., Patten, D., Halliwell, R.F., Gilroy, J., Richardson, M., 2001. Purification and amino acid sequence of a highly insecticidal toxin from the venom of the Brazilian spider *Phoneutria nigriventer* which inhibits NMDA-evoked currents in rat hippocampal neurons. Toxicon 39, 309–317.
- Diochot, S., Drici, M.D., Moinier, D., Fink, M., Lazdunski, M., 1999. Effects of phrixotoxins on the Kv4 family of potassium channels and implications for the role of Ito1 in cardiac electrogenesis. Br. J. Pharmacol. 126, 251–263.
- Dolly, J.O., Parcej, D.N., 1996. Molecular properties of voltage-gated K⁺ channels. J. Bioenerg. Biomembr. 28, 231–253.
- Dos Santos, R.G., Van Renterghem, C., Martin-Moutot, N., Mansuelle, P., Cordeiro, M.N., Diniz, C.R., Mori, Y., De Lima, M.E., Seagar, M., 2002. *Phoneutria nigriventer* ω-phonetoxin IIA blocks the Cav2 family of calcium channels and interacts with ω-conotoxin-binding sites. J. Biol. Chem. 277, 13856–13862.
- Draguhn, A., Jahn, W., Witzemann, V., 1991. Argiotoxin636 inhibits NMDA-activated ion channels expressed in *Xenopus* oocytes. Neurosci. Lett. 132, 187–190.

- Duarte, C.B., Rosário, L.M., Sena, C.M., Carvalho, A.P., 1993. A toxin fraction (FTX) from the funnel-web spider poison inhibits dihydropyridine-insensitive Ca²⁺ channels coupled to catecholamine release in bovine adrenal chromaffin cells. J. Neurochem. 60, 908–913.
- Eldefrawi, A.T., Eldefrawi, M.E., Konno, K., Mansour, N.A., Nakanishi, K., Oltz, E., Usherwood, P.N., 1988. Structure and synthesis of a potent glutamate receptor antagonist in wasp venom. Proc. Natl. Acad. Sci. U. S. A. 85, 4910–4913.
- Elrick, D.B., Charlton, M.P., 1999. α-Latrocrustatoxin increases neurotransmitter release by activating a calcium influx pathway at crayfish neuromuscular junction. J. Neurophysiol. 82, 3550–3562.
- Ertel, E.A., Campbell, K.P., Harpold, M.M., Hofmann, F., Mori, Y., Perez-Reyes, E., Schwartz, A., Snutch, T.P., Tanabe, T., Birnbaumer, L., Tsien, R.W., Catterall, W.A., 2000. Nomenclature of voltage-gated calcium channels. Neuron 25, 533–535.
- Escoubas, P., Diochot, S., Celerier, M.L., Nakajima, T., Lazdunski, M., 2002. Novel tarantula toxins for subtypes of voltage-dependent potassium channels in the Kv2 and Kv4 subfamilies. Mol. Pharmacol. 62, 48-57.
- Fagni, L., Bockaert, J., 1995. Action of argiotoxin636 on N-methyl-D-aspartate channels in cerebellar cells. NeuroReport 6, 1037–1040.
- Finkelstein, A., Rubin, L.L., Tzeng, M.C., 1976. Black widow spider venom: effect of purified toxin on lipid bilayer membranes. Science 193, 1009–1011.
- Fletcher, J.I., Chapman, B.E., Mackay, J.P., Howden, M.E., King, G.F., 1997. The structure of versutoxin (\(\delta\)-atracotoxin-Hv1) provides insights into the binding of site 3 neurotoxins to the voltage-gated sodium channel. Structure 5, 1525-1535.
- Fonnum, F., 1984. Glutamate: a neurotransmitter in mammalian brain. J. Neurochem. 42, 1–11.
- Fontana, A.C., Cairrão, M.A., Colusso, A.J., Santos, W.F., Coutinho-Netto, J., 2000. Paralyzing activity of the *Parawixia bistriata* crude venom in termites: a new bioassay. Toxicon 38, 133–138.
- Fontana, A.C., Guizzo, R., Beleboni, R.O., Meirelles E Silva, A.R., Coimbra, N.C., Amara, S.G., dos Santos, W.F., Coutinho-Netto, J., 2003.Purification of a neuroprotective component of *Parawixia bistriata* spider venom that enhances glutamate uptake. Br. J. Pharmacol. 139, 1297–1309.
- Geppert, M., Goda, Y., Hammer, R.E., Li, C., Rosahl, T.W., Stevens, C.F., Sudhof, T.C., 1994. Synaptotagmin I: a major Ca²⁺ sensor for transmitter release at a central synapse. Cell 79, 717–727.
- Goldin, A.L., 2001. Resurgence of sodium channel research. Annu. Rev. Physiol. 63, 871–894.
- Goldin, A.L., Barchi, R.L., Caldwell, J.H., Hofmann, F., Howe, J.R., Hunter, J.C., Kallen, R.G., Mandel, G., Meisler, M.H., Netter, Y.B., Noda, M., Tamkun, M.M., Waxman, S.G., Wood, N., Catterall, W.A., 2000.
 Nomenclature of voltage-gated sodium channels. Neuron 28, 365–368.
- Green, A.C., Nakanishi, K., Usherwood, P.N., 1996. Polyamine amides are neuroprotective in cerebellar granule cell cultures challenged with excitatory amino acids. Brain Res. 717, 135–146.
- Guatimosim, C., Romano-Silva, M.A., Cruz, J.S., Beirão, P.S., Kalapothakis, E., Moraes-Santos, T., Cordeiro, M.N., Diniz, C.R., Gómez, M.V., Prado, M.A., 1997. A toxin from the spider *Phoneutria nigriventer* that blocks calcium channels coupled to exocytosis. Br. J. Pharmacol. 122, 591–597.
- Harvey, J., Wedley, S., Findlay, J.D., Sidell, M.R., Pullar, I.A., 1996. ω-Agatoxin IVA identifies a single calcium channel subtype which contributes to the potassium-induced release of acetylcholine, 5-hydroxy-tryptamine, dopamine, γ-aminobutyric acid and glutamate from rat brain slices. Neuropharmacology 35, 385–392.
- Harvey, A.L., Bradley, K.N., Cochran, S.A., Rowan, E.G., Pratt, J.A., Quillfeldt, J.A., Jerusalinsky, D.A., 1998. What can toxins tell us for drug discovery? Toxicon 36, 1635–1640.
- Haspel, G., Libersat, F., 2003. Wasp venom blocks central cholinergic synapses to induce transient paralysis in cockroach prey. J. Neurobiol. 54, 628-637.
- Heading, C.E., 2002. Conus peptides and neuroprotection. Curr. Opin. Invest. Drugs 3, 915–920.

- Henkel, A.W., Sankaranarayanan, S., 1999. Mechanisms of α -latrotoxin action. Cell Tissue Res. 296, 229–233.
- Herlitze, S., Raditsch, M., Ruppersberg, J.P., Jahn, W., Monyer, H., Schoepfer, R., Witzemann, V., 1993. Argiotoxin detects molecular differences in AMPA receptor channels. Neuron 10, 1131–1140.
- Himi, T., Saito, H., Kawai, N., Nakajima, T., 1990. Spider toxin (JSTX-3) inhibits the convulsions induced by glutamate agonists. J. Neural Transm., Gen. Sect. 80, 95–104.
- Hollmann, M., Heinemann, S., 1994. Cloned glutamate receptors. Annu. Rev. Neurosci. 17, 31–108.
- Hurlbut, W.P., Chieregatti, E., Valtorta, F., Haimann, C., 1994. α-Latrotoxin channels in neuroblastoma cells. J. Membr. Biol. 138, 91–102.
- Ichtchenko, K., Khvotchev, M., Kiyatkin, N., Simpson, L., Sugita, S., Sudhof, T.C., 1998. α-Latrotoxin action probed with recombinant toxin: receptors recruit α-latrotoxin but do not transduce an exocytotic signal. EMBO J. 17, 6188–6199.
- Jackson, H., Parks, T.N., 1989. Spider toxins: recent applications in neurobiology. Annu. Rev. Neurosci. 12, 405-414.
- Kalapothakis, E., Penaforte, C.L., Leão, R.M., Cruz, J.S., Prado, V.F., Cordeiro, M.N., Diniz, C.R., Romano-Silva, M.A., Prado, M.A., Gomez, M.V., Beirao, P.S., 1998. Cloning, cDNA sequence analysis and patch clamp studies of a toxin from the venom of the armed spider (*Phoneutria nigriventer*). Toxicon 36, 1971–1980.
- Kalikulov, D., Ayar, A., Nuritova, F., Frenguelli, B.G., McClelland, D., Martin, D.J., Davidson, I., Scott, R.H., 2001. Venom from *Anemesia* species of spider modulates high voltage-activated Ca²⁺ currents from rat cultured sensory neurones and excitatory post synaptic currents from rat hippocampal slices. Cell Calcium 30, 212–221.
- Kawai, N., Niwa, A., Abe, T., 1982. Spider venom contains specific receptor blocker of glutaminergic synapses. Brain Res. 247, 169–171.
- Kawai, N., Yamagishi, S., Saito, M., Furuya, K., 1983. Blockade of synaptic transmission in the squid giant synapse by a spider toxin (JSTX). Brain Res. 278, 346–349.
- Kawai, N., Miwa, A., Shimazaki, K., Sahara, Y., Robinson, H.P., Nakajima, T., 1991. Spider toxin and the glutamate. Comp. Biochem. Physiol., C 98, 87–95.
- Keith, R.A., Mangano, T.J., Lampe, R.A., DeFeo, P.A., Hyde, M.J., Donzanti, B.A., 1995. Comparative actions of synthetic ω-grammotoxin SIA and synthetic ω-Aga-IVA on neuronal calcium entry and evoked release of neurotransmitters in vitro and in vivo. Neuropharmacology 34, 1515–1528.
- Khvotchev, M., Sudhof, T.C., 2000. α-Latrotoxin triggers transmitter release via direct insertion into the presynaptic plasma membrane. EMBO J. 19, 3250–3262.
- Kinoshita, E., Maejima, H., Yamaoka, K., Konno, K., Kawai, N., Shimizu, E., Yokote, S., Nakayama, H., Seyama, I., 2001. Novel wasp toxin discriminates between neuronal and cardiac sodium channels. Mol. Pharmacol. 59, 1457–1463.
- Kiskin, N.I., Kryshtal, O.A., Tsyndrenko, A.Ya., Volkova, T.M., Grishin, E.V., 1989. Argiopine, argiopinines and pseudoargiopinines, blockers of the glutamate receptors in hippocampal neurons. Neirofiziologiia 21, 748–756.
- Kiskin, N.I., Chizhmakov, I.V., Tsyndrenko, A.Ya., Mueller, A.L., Jackson, H., Krishtal, O.A., 1992. A highly potent and selective N-methyl-D-aspartate receptor antagonist from the venom of the Agelenopsis aperta spider. Neuroscience 51, 11–18.
- Kobayashi, K., Fischer, J.B., Knapo, A.G., Margolin, L., Daly, D., Reddy, N.L., Roach, B., McCormick, K., Meinwald, J., Goldin, S.M., 1992. A novel polyamine calcium channel antagonist isolated from venom of the spider *Dolomedes okefinokensis*. Soc. Neurosci. Abstr. 18, 10.
- Konno, K., Hisada, M., Naoki, H., Itagaki, Y., Yasuhara, T., Nakata, Y., Miwa, A., Kawai, N., 2000. Molecular determinants of binding of a wasp toxin (PMTXs) and its analogs in the Na⁺ channels proteins. Neurosci. Lett. 285, 29–32.
- Konno, K., Palma, M.S., Hitara, I.Y., Juliano, M.A., Juliano, L., Yasuhara, T., 2002. Identification of bradykinins in solitary wasp venoms. Toxicon 40, 309–312.

- Krasilnikov, O.V., Sabirov, R.Z., 1992. Comparative analysis of latrotoxin channels of different conductance in planar lipid bilayers. Evidence for cluster organization. Biochim. Biophys. Acta 1112, 124–128.
- Krasnoperov, V.G., Beavis, R., Chepurny, O.G., Little, A.R., Plotnikov, A.N., Petrenko, A.G., 1996. The calcium-independent receptor of α-latrotoxin is not a neurexin. Biochem. Biophys. Res. Commun. 227, 868–875.
- Krasnoperov, V.G., Bittner, M.A., Beavis, R., Kuang, Y., Salnikow, K.V., Chepurny, O.G., Little, A.R., Plotnikov, A.N., Wu, D., Holz, R.W., Petrenko, A.G., 1997. α-Latrotoxin stimulates exocytosis by the interaction with a neuronal G-protein-coupled receptor. Neuron 18, 925–937.
- Kruger, P.G., Mahata, S.K., Helle, K.B., 2003. Catestatin (CgA344–364) stimulates rat mast cell release of histamine in a manner comparable to mastoparan and other cationic charged neuropeptides. Regul. Pept. 114, 29–35.
- Kukuljan, M., Labarca, P., Latorre, R., 1995. Molecular determinants of ion conduction and inactivation in K⁺ channels. Am. J. Physiol. 268, C535-C556.
- Kushmerick, C., Kalapothakis, E., Beirão, P.S., Penaforte, C.L., Prado, V.F., Cruz, J.S., Diniz, C.R., Cordeiro, M.N., Gómez, M.V., Romano-Silva, M.A., Prado, M.A., 1999. *Phoneutria nigriventer* toxin Tx3-1 blocks A-type K⁺ currents controlling Ca²⁺ oscillation frequency in GH3 cells. J. Neurochem. 72, 1472-1481.
- Lampe, R.A., Defeo, P.A., Davison, M.D., Young, J., Herman, J.L., Spreen, R.C., Horn, M.B., Mangano, T.J., Keith, R.A., 1993. Isolation and pharmacological characterization of ω-grammotoxin SIA, a novel peptide inhibitor of neuronal voltage-sensitive calcium channel responses. Mol. Pharmacol. 44, 451–460.
- Leão, R.M., Cruz, J.S., Diniz, C.R., Cordeiro, M.N., Beirão, P.S., 2000. Inhibition of neuronal high-voltage activated calcium channels by the ω-Phoneutria nigriventer Tx3-3 peptide toxin. Neuropharmacology 39, 1756-1767
- Lee, J.K., John, S.A., Weiss, J.N., 1999. Novel gating mechanism of polyamine block in the strong inward rectifier K⁺ channel Kir2.1. J. Gen. Physiol. 113, 555–564.
- Leipold, E., Lu, S., Gordon, D., Hansel, A., Heinemann, S.H., 2004. Combinatorial interaction of scorpion toxins Lqh-2, Lqh-3, and Lqh{al-pha}IT with sodium channel receptor sites-3. Mol. Pharmacol. 65, 685-691.
- Letts, V.A., Felix, R., Biddlecome, G.H., Arikkath, J., Mahaffey, C.L., Valenzuela, A., Bartlett, F.S., Mori, Y., Campbell, K.P., Frankel, W.N., 1998. The mouse stargazer gene encodes a neuronal Ca²⁺-channel gamma subunit. Nat. Genet. 19, 340–347.
- Liang, S.P., Chen, X.D., Shu, Q., Zhang, Y., Peng, K., 2000. The presynaptic activity of huwentoxin-I, a neurotoxin from the venom of the Chinese bird spider *Selenocosmia huwena*. Toxicon 38, 1237–1246.
- Libersat, F., 2003. Wasp uses venom cocktail to manipulate the behavior of its cockroach prey. J. Comp. Physiol., A Neuroethol. Sens. Neural Behav. Physiol. 189, 497–508.
- Lipkin, A., Kozlov, S., Nosyreva, E., Blake, A., Windass, J.D., Grishin, E., 2002. Novel insecticidal toxins from the venom of the spider Segestria florentina. Toxicon 40, 125–130.
- Llinás, R., Sugimori, M., Lin, J.W., Cherksey, B., 1989. Blocking and isolation of a calcium channel from neurons in mammals and cephalopods utilizing a toxin fraction (FTX) from funnel-web spider poison. Proc. Natl. Acad. Sci. U. S. A. 86, 1689–1693.
- Llinás, R., Sugimori, M., Hillman, D.E., Cherksey, B., 1992. Distribution and functional significance of the P-type, voltage-dependent Ca²⁺ channels in the mammalian central nervous system. Trends Neurosci. 15, 351–355
- Mafra, R.A., Figueiredo, S.G., Diniz, C.R., Cordeiro, M.N., Cruz, J.D., De Lima, M.E., 1999. PhTx4, a new class of toxins from *Phoneutria nig-riventer* spider venom, inhibits the glutamate uptake in rat brain synaptosomes. Brain Res. 831, 297–300.
- Magazanik, L.G., Fedorova, I.M., Kovalevskaya, G.I., Pashkov, V.N., Bulgakov, O.V., Grishin, E.V., 1992. Selective presynaptic insectotoxin (α-

- latroinsectotoxin) isolated from black widow spider venom. Neuroscience 46, 181-188.
- Matavel, A., Cruz, J.S., Penaforte, C.L., Araújo, D.A., Kalapothakis, E., Prado, V.F., Diniz, C.R., Cordeiro, M.N., Beirão, P.S., 2002. Electrophysiological characterization and molecular identification of the *Phoneutria nigriventer* peptide toxin PnTx2-6. FEBS Lett. 523, 219-223.
- Matthies Jr., H., Brackley, P.T., Usherwood, P.N., Reymann, K.G., 1992.Philanthotoxin-343 blocks long-term potentiation in rat hippocampus.NeuroReport 3, 649-652.
- McCormick, K.D., Meinwald, J., 1993. Neurotoxic acylpolyamines from spider venoms. J. Chem. Ecol. 19, 2411–2451
- Meinwald, J., Eisner, T., 1995. The chemistry of phyletic dominance. Proc. Natl. Acad. Sci. U. S. A. 92, 14–18.
- Mintz, I.M., Venema, V.J., Adams, M.E., Bean, B.P., 1991. Inhibition of N- and L-type Ca^{2+} channels by the spider venom toxin ω -Aga-IIIA. Proc. Natl. Acad. Sci. U. S. A. 88, 6628–6631.
- Miyawaki, T., Tsubokawa, H., Yokota, H., Oguro, K., Konno, K., Masuzawa, T., Kawai, N., 2002. Differential effects of novel wasp toxin on rat hippocampal interneurons. Neurosci. Lett. 328, 25–28.
- Moreno, D.H., 1999. Molecular and functional diversity of voltage-gated calcium channels. Ann. N.Y. Acad. Sci. 868, 102-117.
- Nakajima, T., Yasuhara, T., Uzu, S., Wakamatsu, K., Miyazawa, T., Fukuda, K., Tsukamoto, Y., 1985. Wasp venom peptides; wasp kinins, new cytotrophic peptide families and their physico-chemical properties. Peptides 6 (Suppl. 3), 425–430.
- Newcomb, R., Palma, A., Fox, J., Gaur, S., Lau, K., Chung, D., Cong, R., Bell, J.R., Horne, B., Nadasdi, L., 1995. SNX-325, a novel calcium antagonist from the spider *Segestria florentina*. Biochemistry 34, 8341–8347.
- Nichols, C.G., Lopatin, A.N., 1997. Inward rectifier potassium channels. Annu. Rev. Physiol. 59, 171–191.
- Nicholson, G.M., Willow, M., Howden, M.E., Narahashi, T., 1994. Modification of sodium channel gating and kinetics by versutoxin from the Australian funnel-web spider *Hadronyche versuta*. Pflugers Arch. 428, 400–409.
- Nicholson, G.M., Little, M.J., Tyler, M., Narahashi, T., 1996. Selective alteration of sodium channel gating by Australian funnel-web spider toxins. Toxicon 34, 1443–1453.
- Norris, T.M., Moya, E., Blagbrough, I.S., Adams, M.E., 1996. Block of high-threshold calcium channels by the synthetic polyamines sFTX-3.3 and FTX-3.3. Mol. Pharmacol. 50, 939–946.
- Norton, R.S., Pallaghy, P.K., 1998. The cystine knot structure of ion channel toxins and related polypeptides. Toxicon 36, 1573–1583.
- Ogata, N., Ohishi, Y., 2002. Molecular diversity of structure and function of the voltage-gated Na⁺ channels. Jpn. J. Pharmacol. 88, 365-377.
- Ohara-Imaizumi, M., Nakamichi, Y., Ozawa, S., Katsuta, H., Ishida, H., Nagamatsu, S., 2001. Mastoparan stimulates GABA release from MIN6 cells: relationship between SNARE proteins and mastoparan action. Biochem. Biophys. Res. Commun. 289, 1025–1030.
- Olivera, B.M., Cruz, L.J., 2001. Conotoxins, in retrospect. Toxicon 39, 7-14.
- Olivera, B.M., Miljanich, G.P., Ramachandran, J., Adams, M.E., 1994. Calcium channel diversity and neurotransmitter release: the ω -conotoxins and ω -agatoxins. Annu. Rev. Biochem. 63, 823–867.
- Olney, J.W., 1990. Excitotoxicity: an overview. Can. Dis. Wkly. Rep. 16 (Suppl. 1E), 47–57.
- Omecinsky, D.O., Holub, K.E., Adams, M.E., Reily, M.D., 1996. Three-dimensional structure analysis of μ-agatoxins: further evidence for common motifs among neurotoxins with diverse ion channel specificities. Biochemistry 35, 2836–2844.
- Orlova, E.V., Rahman, M.A., Gowen, B., Volynski, K.E., Ashton, A.C., Manser, C., van Heel, M., Ushkaryov, Y.A., 2000. Structure of α-latrotoxin oligomers reveals that divalent cation-dependent tetramers form membrane pores. Nat. Struct. Biol. 7, 48–53.
- Ozawa, S., Kamiya, H., Tsuzuki, K., 1998. Glutamate receptors in the mammalian central nervous system. Prog. Neurobiol. 54, 581-618.
- Pallaghy, P.K., Alewood, D., Alewood, P.F., Norton, R.S., 1997. Solution

- structure of robustoxin, the lethal neurotoxin from the funnel-web spider *Atrax robustus*. FEBS Lett. 419, 191–196.
- Pan-Hou, H., Suda, Y., Sumi, M., Yoshioka, M., Kawai, N., 1989. A spider toxin (JSTX) inhibits L-glutamate uptake by rat brain synaptosomes. Brain Res. 476, 354–357.
- Peng, K., Shu, Q., Liu, Z., Liang, S., 2002. Function and solution structure of huwentoxin-IV, a potent neuronal tetrodotoxin-sensitive sodium channel antagonist from chinese bird spider *Selenocosmia huwena*. J. Biol. Chem. 277, 47564–47571.
- Petrenko, A.G., Perin, M.S., Davletov, B.A., Ushkaryov, Y.A., Geppert, M., Sudhof, T.C., 1991. Binding of synaptotagmin to the α-latrotoxin receptor implicates both in synaptic vesicle exocytosis. Nature 353, 65–68.
- Phillis, J.W., O'Regan, M.H., 2003. Characterization of modes of release of amino acids in the ischemic/reperfused rat cerebral cortex. Neurochem. Int. 43, 461–467.
- Piek, T., 1982. δ-Philanthotoxin, a semi-irreversible blocker of ion-channels. Comp. Biochem. Physiol., C 72, 311–315.
- Piek, T., 1991. Neurotoxic kinins from wasp and ant venoms. Toxicon 29, 139–149.
- Pin, J.P., Duvoisin, R., 1995. The metabotropic glutamate receptors: structure and functions. Neuropharmacology 34, 1–26.
- Pinto, J.E., Rothlin, R.P., 1974. Presynaptic adrenergic supersensitivity induced by crude *Latrodectus mactans* venom. Toxicon 12, 535–540.
- Piser, T.M., Lampe, R.A., Keith, R.A., Thayer, S.A., 1995. ω-Grammotoxin SIA blocks multiple, voltage-gated, Ca²⁺ channel subtypes in cultured rat hippocampal neurons. Mol. Pharmacol. 48, 131–139.
- Pizzo, A.B., Fontana, A.C., Coutinho-Netto, J., Santos, W.F., 2000. Effects of the crude venom of the social wasp *Agelaia vicina* on γ-aminobutyric acid and glutamate uptake in synaptosomes from rat cerebral cortex. J. Biochem. Mol. Toxicol. 14, 88–94.
- Powers, P.A., Liu, S., Hogan, K., Gregg, R.G., 1993. Molecular characterization of the gene encoding the gamma subunit of the human skeletal muscle 1,4-dihydropyridine-sensitive Ca²⁺ channel (CACNLG), cDNA sequence, gene structure, and chromosomal location. J. Biol. Chem. 268, 9275–9279.
- Powers, P.A., Scherer, S.W., Tsui, L.C., Gregg, R.G., Hogan, K., 1994. Localization of the gene encoding the alpha 2/delta subunit (CACNL2A) of the human skeletal muscle voltage-dependent Ca²⁺ channel to chromosome 7q21-q22 by somatic cell hybrid analysis. Genomics 19, 192-193.
- Protti, D.A., Reisin, R., MacKinley, T.A., Uchitel, O.D., 1996. Calcium channel blockers and transmitter release at the normal human neuromuscular junction. Neurology 46, 1391–1396.
- Quistad, G.B., Reuter, C.C., Skinner, W.S., Dennis, P.A., Suwanrumpha, S., Fu, E.W., 1991. Paralytic and insecticidal toxins from the funnel web spider, *Hololena curta*. Toxicon 29, 329–336.
- Rash, L.D., Birinyi-Strachan, L.C., Nicholson, G.M., Hodgson, W.C., 2000. Neurotoxic activity of venom from the Australian eastern mouse spider (*Missulena bradleyi*) involves modulation of sodium channel gating. Br. J. Pharmacol. 130, 1817–1824.
- Reis, H.J., Prado, M.A., Kalapothakis, E., Cordeiro, M.N., Diniz, C.R., De Marco, L.A., Gómez, M.V., Romano-Silva, M.A., 1999. Inhibition of glutamate uptake by a polypeptide toxin (phoneutriatoxin 3–4) from the spider *Phoneutria nigriventer*. Biochem. J. 343, 413–418.
- Reis, H.J., Gómez, M.V., Kalapothakis, E., Diniz, C.R., Cordeiro, M.N., Prado, M.A., Romano-Silva, M.A., 2000. Inhibition of glutamate uptake by Tx3-4 is dependent on the redox state of cysteine residues. NeuroReport 11, 2191-2194.
- Richard Benzinger, G., Tonkovich, G.S., Hanck, D.A., 1999. Augmentation of recovery from inactivation by site-3 Na channel toxins. A single-channel and whole-cell study of persistent currents. J. Gen. Physiol. 113, 333–346.
- Richerson, G.B., Wu, Y., 2003. Dynamic equilibrium of neurotransmitter transporters: not just for reuptake anymore. J. Neurophysiol. 90, 1363-1374.
- Rodrigues, M.C., Guizzo, R., Santos, W.F., Cairasco, N.G., 2001. A com-

- parative neuroethological study of limbic seizures induced by *Parawixia bistriata* venom and kainic acid injections in rats. Brain Res. Bull. 55, 79–86.
- Rogers, J.C., Qu, Y., Tanada, T.N., Scheuer, T., Catterall, W.A., 1996. Molecular determinants of high affinity binding of alpha-scorpion toxin and sea anemone toxin in the S3–S4 extracellular loop in domain IV of the Na⁺ channel alpha subunit. J. Biol. Chem. 271, 15950–15962.
- Sahara, Y., Gotoh, M., Konno, K., Miwa, A., Tsubokawa, H., Robinson, H.P., Kawai, N., 2000. A new class of neurotoxin from wasp venom slows inactivation of sodium current. Eur. J. Neurosci. 12, 1961–1970.
- Sanguinetti, M.C., Johnson, J.H., Hammerland, L.G., Kelbaugh, P.R., Volkmann, R.A., Saccomano, N.A., Mueller, A.L., 1997. Heteropodatoxins: peptides isolated from spider venom that block Kv4.2 potassium channels. Mol. Pharmacol. 51, 491–498.
- Schmidt, J.O., 1986. Chemistry, pharmacology and chemical ecology of ant venoms. In: Piek, T. (Ed.), Venoms of the Hymenoptera. Academic Press, London, pp. 425–508.
- Scott, R.H., Dolphin, A.C., Bindokas, V.P., Adams, M.E., 1990. Inhibition of neuronal Ca²⁺ channel currents by the funnel web spider toxin ω-Aga-IA. Mol. Pharmacol. 38, 711–718.
- Shatursky, O.Ya., Pashkov, V.N., Bulgacov, O.V., Grishin, E.V., 1995.Interaction of α-latroinsectotoxin from *Latrodectus mactans* venom with bilayer lipid membranes. Biochim. Biophys. Acta 1233, 14–20.
- Sitges, M., Chiu, L.M., 1995. ω-Aga IVA selectively inhibits the calcium-dependent fraction of the evoked release of [³H]GABA from synaptosomes. Neurochem. Res. 20, 1065–1071.
- Skinner, W.S., Adams, M.E., Quistad, G.B., Kataoka, H., Cesarin, B.J., Enderlin, F.E., Schooley, D.A., 1989. Purification and characterization of two classes of neurotoxins from the funnel web spider, *Agelenopsis aperta*. J. Biol. Chem. 264, 2150–2155.
- Stapleton, A., Blankenship, D.T., Ackermann, B.L., Chen, T.M., Gorder, G.W., Manley, G.D., Palfreyman, M.G., Coutant, J.E., Cardin, A.D., 1990. Curtatoxins. Neurotoxic insecticidal polypeptides isolated from the funnel-web spider *Hololena curta*. J. Biol. Chem. 265, 2054–2059.
- Strichartz, G., Rando, T., Wang, G.K., 1987. An integrated view of the molecular toxicology of sodium channel gating in excitable cells. Annu. Rev. Neurosci. 10, 237–267.
- Stromgaard, K., Brierley, M.J., Andersen, K., Slok, F.A., Mellor, I.R., Usherwood, P.N., Krogsgaard-Larsen, P., Jaroszewski, J.W., 1999. Analogues of neuroactive polyamine wasp toxins that lack inner basic sites exhibit enhanced antagonism toward a muscle-type mammalian nicotinic acetylcholine receptor. J. Med. Chem. 42, 5224–5234.
- Stromgaard, K., Andersen, K., Krogsgaard-Larsen, P., Jaroszewski, J.W., 2001. Recent advances in the medicinal chemistry of polyamine toxins. Mini Rev. Med. Chem. 1, 317–338.
- Swartz, K.J., MacKinnon, R., 1997. Hanatoxin modifies the gating of a voltage-dependent K⁺ channel through multiple binding sites. Neuron 18, 665–673.
- Szeto, T.H., Birinyi-Strachan, L.C., Smith, R., Connor, M., Christie, M.J., King, G.F., Nicholson, G.M., 2000. Isolation and pharmacological characterisation of δ-atracotoxin-Hv1b, a vertebrate-selective sodium channel toxin. FEBS Lett. 470, 293–299.
- Takahashi, M., Seagar, M.J., Jones, J.K., Reber, B.F., Catterall, W.A., 1987.Subunit structure of dihydropyridine-sensitive calcium channels from skeletal muscle. Proc. Natl. Acad. Sci. U. S. A. 84, 5478–5482.
- Takahashi, H., Kim, J.I., Min, H.J., Sato, K., Swartz, K.J., Shimada, I., 2000. Solution structure of hanatoxin1, a gating modifier of voltagedependent K⁺ channels: common surface features of gating modifier toxins. J. Mol. Biol. 297, 771–780.
- Terlau, H., Stuhmer, W., 1998. Structure and function of voltage-gated ion channels. Naturwissenschaften 85, 437–444.
- Tuichibaev, M.U., Tashmukhamedov, B.A., Gotgil'f, I.G., Mazannik, L.G., 1984. Orientotoxin, a new presynaptic neurotoxin from the venom of the giant hornet *Vespa orientalis*. Bioorg. Khim. 10, 318–322.

- Uchitel, O.D., 1997. Toxins affecting calcium channels in neurons. Toxicon 35, 1161–1191.
- Uchitel, O.D., Protti, D.A., Sanchez, V., Cherksey, B.D., Sugimori, M., Llinás, R., 1992. P-type voltage-dependent calcium channel mediates presynaptic calcium influx and transmitter release in mammalian synapses. Proc. Natl. Acad. Sci. U. S. A. 89, 3330–3333.
- Usherwood, P.N., Blagbrough, I.S., 1991. Spider toxins affecting glutamate receptors: polyamines in therapeutic neurochemistry. Pharmacol. Ther. 52, 245–268.
- Usherwood, P.N., Duce, I.R., Boden, P., 1984. Slowly-reversible block of glutamate receptor-channels by venoms of the spiders, *Argiope trifasciata* and *Araneus gemma*. J. Physiol. (Paris) 79, 241–245.
- Ushkaryov, Y., 2002. α-Latrotoxin: from structure to some functions. Toxicon 40, 1–5.
- Ushkaryov, Y.A., Petrenko, A.G., Geppert, M., Sudhof, T.C., 1992. Neurexins: synaptic cell surface proteins related to the α -latrotoxin receptor and laminin. Science 257, 50–56.
- Vajda, F.J., 2002. Neuroprotection and neurodegenerative disease. J. Clin. Neurosci. 9, 4–8.
- Van Marle, J., Piek, T., Lind, A., Van Weeren-Kramer, J., 1986. Reduction of high affinity glutamate uptake in rat hippocampus by two polyaminelike toxins isolated from the venom of the predatory wasp *Philanthus* triangulum FJ. Experientia 42, 157–158.
- Van Marle, J., Piek, T., Karst, H., Lind, A., Van Weeren-Kramer, J., 1989. Presynaptic effects of spider toxins: increase of high affinity uptake in the arthropod peripheral glutamatergic system. Experientia 45, 155-156.
- Van Wilgenburg, H., Piek, T., Mantel, P., 1984. Ion channel block in rat diaphragm by the venom of the digger wasp *Philanthus triangulum*. Comp. Biochem. Physiol., C 79, 205–211.
- Venema, V.J., Swiderek, K.M., Lee, T.D., Hathaway, G.M., Adams, M.E., 1992. Antagonism of synaptosomal calcium channels by subtypes of ωagatoxins. J. Biol. Chem. 267, 2610–2615.
- Vergara, C., Latorre, R., Marrion, N.V., Adelman, J.P., 1998. Calcium-activated potassium channels. Curr. Opin. Neurobiol. 8, 321–329.
- Vieira, L.B., Kushmerick, C., Reis, H.J., Diniz, C.R., Cordeiro, M.N.,

- Prado, M.A., Kalapothakis, E., Romano-Silva, M.A., Gómez, M.V., 2003. PnTx3-6 a spider neurotoxin inhibits K^+ evoked increase in $[{\rm Ca}^{2\,^{+}}]_i$ and ${\rm Ca}^{2\,^{+}}$ -dependent glutamate release in synaptosomes. Neurochem. Int. 42, 277-282.
- Wang, X., Smith, R., Fletcher, J.I., Wilson, H., Wood, C.J., Howden, M.E., King, G.F., 1999. Structure–function studies of ω-atracotoxin, a potent antagonist of insect voltage-gated calcium channels. Eur. J. Biochem. 264, 488–494.
- Watanabe, E., Fujikawa, A., Matsunaga, H., Yasoshima, Y., Sako, N., Yamamoto, T., Saegusa, C., Noda, M., 2000. Na_v2/NaG channel is involved in control of salt-intake behavior in the CNS. J. Neurosci. 20, 7743-7751.
- Wilson, M.L., Guild, S.B., 2002. A direct inhibitory action of prostaglandins upon ACTH secretion at the late stages of the secretory pathway of AtT-20 cells. Br. J. Pharmacol. 135, 1851–1858.
- Williams, K., 1993. Effects of Agelenopsis aperta toxins on the N-methyl-D-aspartate receptor: polyamine-like and high-affinity antagonist actions. J. Pharmacol. Exp. Ther. 266, 231–236.
- Williams, M.E., Brust, P.F., Feldman, D.H., Patthi, S., Simerson, S., Maroufi, A., McCue, A.F., Velicelebi, G., Ellis, S.B., Harpold, M.M., 1992. Structure and functional expression of an omega-conotoxin-sensitive human N-type calcium channel. Science 257, 389–395.
- Xiao, Y.C., Liang, S.P., 2003. Inhibition of sodium channels in rat dorsal root ganglion neurons by Hainantoxin-IV, a novel spider toxin. Acta Biochim. Biophys. Sin. 35, 82–85.
- Yamada, M., Inanobe, A., Kurachi, Y., 1998. G protein regulation of potassium ion channels. Pharmacol. Rev. 50, 723–760.
- Yi, B.A, Minor Jr., D.L., Lin, Y.F., Jan, Y.N., Jan, L.Y., 2001. Controlling potassium channel activities: interplay between the membrane and intracellular factors. Proc. Natl. Acad. Sci. U. S. A. 98, 11016–11023.
- Yokota, H., Tsubokawa, H., Miyawaki, T., Konno, K., Nakayama, H., Masuzawa, T., Kawai, N., 2001. Modulation of synaptic transmission in hippocampal CA1 neurons by a novel neurotoxin (β-pompilidotoxin) derived from wasp venom. Neurosci. Res. 41, 365–371.
- Yu, F.H., Catterall, W.A., 2003. Overview of the voltage-gated sodium channel family. Genome Biol. 4, 207.